Cuvillier Verlag

35 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Machine Learning Techniques for Time Series Classification

Printausgabe
EUR 49,90

E-Book
EUR 34,90

Machine Learning Techniques for Time Series Classification (Band 2)

Michael Botsch (Autor)

Vorschau

Leseprobe, PDF (200 KB)
Inhaltsverzeichnis, PDF (51 KB)

Classification of time series is an important task in various fields, e.g., medicine, finance, and industrial applications. This work discusses strong temporal classification using machine learning techniques. Here, two problems must be solved: the detection of those time instances when the class labels change and the correct assignment of the labels. For this purpose the scenario-based random forest algorithm and a segment and label approach are introduced. The latter is realized with either the augmented dynamic time warping similarity measure or with interpretable generalized radial basis function classifiers.
The main application presented in this work is the detection and categorization of car crashes using machine learning. Depending on the crash severity different safety systems, e.g., belt tensioners or airbags must be deployed at time instances when the best-possible protection of passengers is assured.

ISBN-13 (Printausgabe) 9783736978133
ISBN-13 (E-Book) 9783736968134
Sprache Englisch
Seitenanzahl 216
Umschlagkaschierung matt
Auflage 2.
Buchreihe Künstliche Intelligenz & Digitalisierung
Band 2
Erscheinungsort Göttingen
Promotionsort TU München
Erscheinungsdatum 23.06.2023
Allgemeine Einordnung Dissertation
Fachbereiche Elektrotechnik
Schlagwörter time series, car crashes, machine learning, airbags, protection of passengers