Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

Solubility enhancement of poorly water-soluble drugs by solid dispersion

Printausgabe
EUR 30,00 EUR 28,50

E-Book
EUR 0,00

Solubility enhancement of poorly water-soluble drugs by solid dispersion

a comparison of two manufacturing methods

Adela Kalivoda (Autor)

Vorschau

Leseprobe, PDF (520 KB)
Inhaltsverzeichnis, PDF (130 KB)

ISBN-13 (Printausgabe) 9783954041411
ISBN-13 (E-Book) 9783736941410
Sprache Englisch
Seitenanzahl 198
Umschlagkaschierung matt
Auflage 1. Aufl.
Erscheinungsort Göttingen
Promotionsort Göttingen
Erscheinungsdatum 25.06.2012
Allgemeine Einordnung Dissertation
Fachbereiche Pharmazie
Beschreibung

Summary

Solid dispersions are a promising approach for controlled release drug delivery systems as both the bioavailability enhancement of poorly water-soluble drugs as well as the sustained release of water-soluble drugs are possible to optimize their in vivo performance.
Different methods for the manufacture of solid dispersion systems have been introduced in literature. In the present work, two methods are compared: hot-melt extrusion and ultrasound-assisted compaction technique. Various carrier systems and drugs with different physicochemical properties are applied to investigate the feasibility of the technologies for pharmaceutical formulation. The formulations are compared to the corresponding untreated physical blends of the components regarding their solid state structure and dissolution behavior to assess the effect of the manufacturing technique.

Ultrasound-assisted compaction technique improves the initial dissolution rate of fenofibrate, a poorly water-soluble model drug. The crystalline API is partially converted into its amorphous state. As equivalent results can be achieved if the polymers are added directly to the dissolution medium, the dissolution enhancement is attributed to an improved wettability of the drug.
A statistical design of experiments is employed to investigate the effect of the process parameters on the results. Difficulties are encountered in the determination of process parameters which result in an optimal outcome. The process is very sensitive to the smallest changes of settings, for example of the position of the sonotrode. Additionally, the delivery of ultrasound energy is inhomogeneous. There is no or only insufficient user control of these parameters available. Furthermore, the duration of ultrasound energy delivery which is identified as a crucial parameter cannot be set by the user. The variable factors ultrasound energy, pressure of the lower piston and pressure of the upper piston affect the defined responses in the opposite direction. Hence, there are no settings which result in a satisfactory outcome. A strong influence of the material characteristics on the process is observed leading to a batch to batch variability.
Due to an insufficient reproducibility of results, the application of the technology cannot be recommended in its current state in the pharmaceutical formulation development and/or production. Improvements in homogeneity of energy delivery, process monitoring, user control and amount of leakage are mandatory for an acceptable performance and a future application in the pharmaceutical sector.

The polymers COP, HPMC and PVCL-PVAc-PEG are well suitable as carriers for hot-melt extruded formulations of fenofibrate. All three extrudates are amorphous one-phase systems with the drug molecularly dispersed in the polymer.
The enhancement of the initial dissolution rate and the maximum concentration level achieved are dependent on the applied carrier system. Supersaturation levels of up to 12.1 times are reached which are not stable due to recrystallization processes. The application of blends of polymers as carriers reduces the decrease rate after cmax. Because of water absorption and polymer relaxation, the overall dissolution performance decreases with increasing storage times which can be avoided through an optimization of the packaging.
If oxeglitazar is used as API, the initial dissolution rate of the extrudates is below that of the untreated drug, with the exception of the ternary blend of COP, HPMC and oxeglitazar which shows a substance-specific super-additive effect. In contrast to the other extrudates, the formulation of PVCL-PVAc-PEG and oxeglitazar does not form a molecularly dispersed solid solution of the drug in the carrier. Instead, an amorphous two-phase system is present. No changes are observed after storage, presumably due to higher glass transition temperatures of the hot-melt extruded systems which are considerably above those of the corresponding fenofibrate extrudates.
With felodipine as API, the dissolution profile is enhanced with COP as single carrier. If HPMC or PVCL-PVAc-PEG is used as single or additional polymeric carriers, the dissolution is equivalent (HPMC) or lower (PVCL-PVAc-PEG) than that of the pure drug although molecularly disperse systems are present in all cases.

Out of the two investigated methods only hot-melt extrusion is a suitable technology to manufacture solid dispersions with an improved dissolution behavior. The dissolution profile of the extrudates can be influenced by adding polymers with differing physicochemical characteristics. Predictions on the dissolution behavior of the extrudates with polymeric blends as carriers can be made if there is knowledge on the dissolution profiles of the corresponding single polymeric extrudates. Due to substance-specific effects, the results are not transferable from drug to drug. Even so, the data are promising as the release behavior of the manufactured extrudates can be easily modified and readily adapted to one’s needs.
Further research will have to be conducted to verify the concept and the relevance of the results in vivo.

Zusammenfassung

Feste Dispersionen sind ein vielversprechender Ansatz zur Herstellung von Drug Delivery-Systemen mit kontrollierter Wirkstofffreisetzung, da sie sowohl die Bioverfügbarkeit schlecht wasserlöslicher Arzneistoffe verbessern als auch die Freisetzung gut wasserlöslicher Arzneistoffe verzögern können und so deren in vivo Verhalten optimieren.
Verschiedene Herstellungsmethoden wurden in der Literatur vorgestellt. In der vorliegenden Arbeit werden zwei Technologien miteinander verglichen: Schmelzextrusion und Ultraschall gestützte Verpressung (USAC). Verschiedene Trägersysteme und Arzneistoffe mit unterschiedlichen physikochemischen Eigenschaften werden untersucht, um die Einsatzmöglichkeit im pharmazeutischen Bereich zu überprüfen. Die Struktur der hergestellten Systeme und deren Freisetzungsverhalten werden mit den physikalischen Mischungen der Komponenten verglichen, um den Einfluss der Formulierung zu bestimmen.

Durch USAC wird die initiale Freisetzungsrate von Fenofibrat, einem schlecht wasserlöslichen Modellarzneistoff, verbessert. Eine teilweise Umwandlung vom kristallinen in den amorphen Zustand tritt auf. Vergleichbare Ergebnisse werden bei einer Polymerzugabe zum Freisetzungsmedium erreicht; daher wird davon ausgegangen, dass vor allem eine verbesserte Benetzbarkeit des Arzneistoffs eine Rolle spielt.
Mittels statistischer Versuchsplanung wird der Einfluss der verschiedenen Prozessparameter untersucht. Die Einstellung der Prozessparameter, um ein optimales Ergebnis zu erhalten, gestaltet sich schwierig. Der Prozess reagiert auf kleinste Veränderungen, zum Beispiel der Position der Sonotrode, überaus sensitiv. Außerdem wird die Ultraschallenergie nicht homogen übertragen. Die Kontrolle dieser Parameter durch den Anwender ist nicht oder nur unzureichend möglich. Ebenso kann die Dauer der Ultraschallapplizierung, die essentiell für den Prozess ist, nicht eingestellt werden. Die Prozessparameter Ultraschallenergie, Unterstempeldruck und Sonotrodendruck beeinflussen die Zielgrößen in entgegengesetzter Richtung. Daher gibt es keine Einstellung, die für alle Zielgrößen optimale Ergebnisse liefert. Zusätzlich ist der Prozess stark abhängig von den Eigenschaften des verwendeten Materials: Die Verwendung unterschiedlicher Polymerchargen macht eine Anpassung der Prozessparameter notwendig, um vergleichbare Ergebnisse zu erhalten.
Eine ausreichende Reproduzierbarkeit der Ergebnisse für einen Einsatz dieser Technologie in Formulierungsentwicklung oder Produktion ist nicht gegeben. Eine homogene Ultraschallenergiezufuhr sowie Verbesserungen der Prozessüberwachung, der Benutzerkontrolle und eine Verminderung der austretenden Materialmenge sind für eine akzeptable Leistung und eine zukünftige Anwendung im pharmazeutischen Bereich zwingend erforderlich.

Die Polymere COP, HPMC, PVCL-PVAc-PEG sind für eine Freisetzungsverbesserung von Fenofibrat mittels Schmelzextrusion geeignet. Es liegen einphasige, molekulardisperse feste Lösungen vor. Abhängig von der Trägersubstanz wird die initiale Freisetzungsrate unterschiedlich stark erhöht, ebenso die maximale Konzentration des Arzneistoffes in Lösung. Eine bis zu 12.1-fache Übersättigung wird erreicht, die aufgrund von Rekristallisationsprozessen nicht stabil ist. Der Einsatz von polymeren Mischungen reduziert die Geschwindigkeit des Konzentrationsabfalls. Die Absorption von Wasser und Relaxationseffekte vermindern die Freisetzungserhöhung mit zunehmender Lagerdauer; dieser Entwicklung kann durch eine Optimierung des Packmittels entgegengewirkt werden.
Wird der ebenfalls schwer wasserlösliche Arzneistoff Oxeglitazar verwendet, so ist die initiale Freisetzungsrate der Extrudate der des reinen Arzneistoffs unterlegen, mit Ausnahme der ternären Mischung von COP, HPMC und Oxeglitazar, die einen substanzspezifischen überadditiven Effekt aufweist. PVCL-PVAc-PEG-Oxeglitazar-Extrudate bilden im Gegensatz zu den übrigen Formulierungen keine molekulardisperse feste Lösung, sondern ein amorphes Zwei-Phasen-System. Eine Veränderung während der Lagerzeit wird nicht beobachtet, vermutlich aufgrund der höheren Glasübergangstemperaturen dieser Systeme.
Lediglich das Freisetzungsprofil von COP-Felodipin-Extrudaten ist verbessert. Gegenüber dem reinen Arzneistoff ist die Freisetzung der übrigen Extrudate vergleichbar (HPMC) oder verringert (PVCL-PVAc-PEG), obwohl auch hier molekulardisperse Systeme vorliegen.
Von den beiden untersuchten Technologien ist lediglich die Schmelzextrusion geeignet, um feste Dispersionen mit einem verbesserten Freisetzungsverhalten herzustellen. Das Freisetzungsprofil der Extrudate kann durch den Zusatz von Polymeren mit unterschiedlichen Eigenschaften optimiert und vorhergesagt werden, wenn das Freisetzungsprofil der Einzelpolymer-Extrudate bekannt ist. Die Ergebnisse sind aufgrund von substanzspezifischen Effekten nicht von Arzneistoff auf Arzneistoff übertragbar. Nichtsdestotrotz sind die Erkenntnisse dieser Arbeit vielversprechend, da gezeigt wird, dass das Freisetzungsprofil der Extrudate leicht beeinflusst und an spezifische Anforderungen angepasst werden kann.
Weitere Untersuchungen sind notwendig, um das Konzept und die Relevanz der Ergebnisse in vivo zu überprüfen.