Fachbereiche | |
---|---|
Buchreihen (95) |
1329
|
Geisteswissenschaften |
2300
|
Naturwissenschaften |
5356
|
Mathematik | 224 |
Informatik | 314 |
Physik | 975 |
Chemie | 1354 |
Geowissenschaften | 131 |
Humanmedizin | 242 |
Zahn-, Mund- und Kieferheilkunde | 10 |
Veterinärmedizin | 100 |
Pharmazie | 147 |
Biologie | 830 |
Biochemie, Molekularbiologie, Gentechnologie | 117 |
Biophysik | 25 |
Ernährungs- und Haushaltswissenschaften | 44 |
Land- und Agrarwissenschaften | 996 |
Forstwissenschaften | 201 |
Gartenbauwissenschaft | 20 |
Umweltforschung, Ökologie und Landespflege | 145 |
Ingenieurwissenschaften |
1751
|
Allgemein |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Inhaltsverzeichnis, Datei (72 KB)
Leseprobe, Datei (220 KB)
In this work novel three-dimensional metamaterials are realized by rolling-up strained metal/semiconducting nanolayers. The properties of these artifcial, optical crystals can be described by efective parameters, which are investigated by numerical simulations as well as experimental transmission and refection measurements. Three-dimensional radial metamaterials were fabricated by rolling up a strained Ag/GaAs/InGaAs multilayer into a microroll with several rotations. The radial metama¬terial, which is defned by the windings of the wall of the microroll, exhibits a dispersive and strongly anisotropic permittivity. It is shown by numerical simulations that such structures work as hyperlenses for specifc wavelengths in the visible and near-infrared regime, i.e. they allow magnifed, optical images with subwavelength resolution. To characterize the optical properties of the rolled-up hyperlenses a fber-based transmission and refection setup has been developed. From the measured refectivity and transmis¬sion spectra the operation wavelength of the hyperlens could be determined. We could show experimentally that this wavelength depends on the ratio of layer thicknesses of the Ag/(In)GaAs layers and could be tuned in a wavelength range from 680 nm to 780 nm. Furthermore frst near-feld scanning microscopy measurements were performed in cooperation with the Univerity of Bourgogne to prove the magnifying subwavelength imaging of the hyperlens. A further concept of this work is concerned with metamaterials made of arrays of many rolled-up Chromium/InGaAs microrolls. We have shown by analytical and numerical simulations that these structures interact resonantly with the magnetic component of an electromagnetic feld and exhibit a negative permeability in the far infrared at frequencies ofafewteraherz. Byoptimizingtheroll-upprocessarrayswithahighdensityofmicrorolls were prepared and frst transmission measurements were performed in the far infrared.
ISBN-13 (Printausgabe) | 3869554665 |
ISBN-13 (Printausgabe) | 9783869554662 |
ISBN-13 (E-Book) | 9783736934665 |
Sprache | Englisch |
Seitenanzahl | 86 |
Auflage | 1 Aufl. |
Band | 0 |
Erscheinungsort | Göttingen |
Promotionsort | Universität Hamburg |
Erscheinungsdatum | 02.09.2010 |
Allgemeine Einordnung | Dissertation |
Fachbereiche |
Physik
|