Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

Premiumpartner
De En Es
Titelbild-leitlinien
Recent Methods from Statistics and Machine Learning for Credit Scoring

Printausgabe
EUR 32,80 EUR 31,16

E-Book
EUR 22,96

Recent Methods from Statistics and Machine Learning for Credit Scoring

Anne Kraus (Autor)

Vorschau

Inhaltsverzeichnis, PDF (45 KB)
Leseprobe, PDF (160 KB)

ISBN-13 (Printausgabe) 9783954047369
ISBN-13 (E-Book) 9783736947368
Sprache Englisch
Seitenanzahl 166
Umschlagkaschierung matt
Auflage 1. Aufl.
Erscheinungsort Göttingen
Promotionsort München
Erscheinungsdatum 08.07.2014
Allgemeine Einordnung Dissertation
Fachbereiche Mathematik
Schlagwörter Credit Scoring, AUC, optimization, Banking
Beschreibung

Credit scoring models are the basis for financial institutions like retail and consumer credit banks. The purpose of the models is to evaluate the likelihood of credit applicants defaulting in order to decide whether to grant them credit. The area under the receiver operating characteristic (ROC) curve (AUC) is one of the most commonly used measures to evaluate predictive performance in credit scoring.
The aim of this thesis is to benchmark different methods for building scoring models in order to maximize the AUC. While this measure is used to evaluate the predictive accuracy of the presented algorithms, the AUC is especially introduced as direct optimization criterion.