Departments | |
---|---|
Book Series (92) |
1308
|
Humanities |
2293
|
Natural Sciences |
5354
|
Mathematics | 224 |
Informatics | 313 |
Physics | 975 |
Chemistry | 1354 |
Geosciences | 131 |
Human medicine | 242 |
Stomatology | 10 |
Veterinary medicine | 99 |
Pharmacy | 147 |
Biology | 830 |
Biochemistry, molecular biology, gene technology | 117 |
Biophysics | 25 |
Domestic and nutritional science | 44 |
Agricultural science | 996 |
Forest science | 201 |
Horticultural science | 20 |
Environmental research, ecology and landscape conservation | 145 |
Engineering |
1746
|
Common |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Table of Contents, PDF (45 KB)
Extract, PDF (160 KB)
Credit scoring models are the basis for financial institutions like retail and consumer credit banks. The purpose of the models is to evaluate the likelihood of credit applicants defaulting in order to decide whether to grant them credit. The area under the receiver operating characteristic (ROC) curve (AUC) is one of the most commonly used measures to evaluate predictive performance in credit scoring.
The aim of this thesis is to benchmark different methods for building scoring models in order to maximize the AUC. While this measure is used to evaluate the predictive accuracy of the presented algorithms, the AUC is especially introduced as direct optimization criterion.
ISBN-13 (Hard Copy) | 9783954047369 |
ISBN-13 (eBook) | 9783736947368 |
Language | English |
Page Number | 166 |
Lamination of Cover | matt |
Edition | 1. Aufl. |
Publication Place | Göttingen |
Place of Dissertation | München |
Publication Date | 2014-07-08 |
General Categorization | Dissertation |
Departments |
Mathematics
|
Keywords | Credit Scoring, AUC, optimization, Banking |