Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Single Artificial-Atom Lasing of a Dressed Flux Qubit

EUR 41,90

EUR 29,33

Single Artificial-Atom Lasing of a Dressed Flux Qubit

Gregor Oelsner (Autor)


Inhaltsverzeichnis, PDF (51 KB)
Leseprobe, PDF (110 KB)

ISBN-13 (Printausgabe) 9783736994676
ISBN-13 (E-Book) 9783736984677
Sprache Englisch
Seitenanzahl 160
Umschlagkaschierung matt
Auflage 1. Aufl.
Erscheinungsort Göttingen
Promotionsort Jena
Erscheinungsdatum 07.02.2017
Allgemeine Einordnung Dissertation
Fachbereiche Physik
Schlagwörter Two-Level System, Quantum Physics, Cavity Quantum Electrodynamics, Maxwell-Bloch equations, Lindbed equation Low Temperatures, Superconductivity, Einzel-atom-Lasing, Zwei-Niveau System, Quantenphysik, Tiefe Temperaturen, Supraleitung

Superconducting quantum bits originally developed for quantum computation have properties similar to real atoms. Because they are micro fabricated circuits, their interaction with electromagnetic radiation can be engineered and effects known from quantum optics may be realized.
In this work, a unique lasing scheme exploiting only the lowest two levels of a single artificial atom coupled to a high-quality superconducting resonator is experimentally realized. It is based on the dressing of the atom’s states by a strong signal and the associated rescaling of the relaxation. In addition, basic physical processes are discussed by a separate characterization of the artificial atom, the resonator, and their coupling. A quantum theory including dissipative processes is developed from basic superconducting effects and its applicability demonstrated by a perfect agreement with the experimental results. It gives an illustrative insight into the physics of atom-photon interaction.