Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

Premiumpartner
De En Es
Titelbild-leitlinien
Capillary wetting of heterogeneous powders

Printausgabe
EUR 55,00

E-Book
EUR 38,50

Capillary wetting of heterogeneous powders (Band 15)

Jana Kammerhofer (Autor)

Vorschau

Leseprobe, PDF (630 KB)
Inhaltsverzeichnis, PDF (520 KB)

ISBN-13 (Printausgabe) 9783736970823
ISBN-13 (E-Book) 9783736960824
Sprache Englisch
Seitenanzahl 156
Umschlagkaschierung matt
Auflage 1.
Buchreihe SPE-Schriftenreihe
Band 15
Erscheinungsort Göttingen
Erscheinungsdatum 09.09.2019
Allgemeine Einordnung Dissertation
Fachbereiche Maschinenbau und Verfahrenstechnik
Schlagwörter Capillary penetration, Wetting, Dissolution, Heterogeneity, Viscosity build up, Contact angle, Food powder, Reconstitution, Hydrophilic, Hydrophobic, Crystalline sucrose, Washburn setup, Washburn equation, Pore network, Model
Beschreibung

The objective of this PhD thesis is the enhancement of understanding and prediction of capillary wetting of heterogeneous, soluble food powders. Therefore, the capillary penetration is studied experimentally by increasing stepwise the complexity. Firstly, the heterogeneity in terms of contact angle and the effect of solubility during capillary wetting as the two main influencing factors are investigated separately and in a second step both factors are combined. Furthermore, a new model based on the coupling of the Washburn and the mass transfer equation is presented dealing simultaneously with capillary penetration and dissolution. It is observed that the viscosity increase is dominant during liquid penetration for the powder systems containing the most soluble component (sucrose) at a high concentration. For powder mixtures containing a less soluble component with less viscosity development (sodium chloride), the hydrophobic contact angle drives the liquid penetration.