Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Validation of a two-dimensional model for vanadium redox-flow batteries

Printausgabe
EUR 45,50

E-Book
EUR 31,80

Validation of a two-dimensional model for vanadium redox-flow batteries (Band 65)

Maik Becker (Autor)

Vorschau

Inhaltsverzeichnis, PDF (540 KB)
Leseprobe, PDF (760 KB)

ISBN-13 (Printausgabe) 9783736972100
ISBN-13 (E-Book) 9783736962101
Sprache Englisch
Seitenanzahl 150
Umschlagkaschierung matt
Auflage 1.
Buchreihe Schriftenreihe des Energie-Forschungszentrums Niedersachsen (EFZN)
Band 65
Erscheinungsort Göttingen
Promotionsort TU Clausthal
Erscheinungsdatum 11.05.2020
Allgemeine Einordnung Dissertation
Fachbereiche Technische Chemie und Chemieingenieurwesen
Maschinenbau und Verfahrenstechnik
Energietechnik
Schlagwörter redox flow battery, redox-flow battery, vanadium, mathematical model, 2D model, two dimensional model, validation, potential probes, pseudo reference electrodes, current density distribution, electrochemical kinetics, kinetics, exchange current density, reaction rate constant, charge transfer resistance, charge transfer coefficient, tafel slope, carbon felt, membrane resistance, impedance spectroscopy, Nyquist plot, carbon felt resistance, polarization curve, solid phase probe, liquid phase probe, redox potential, mass transport, mass transfer coefficient, Sherwood number, Reynolds number, mass transport correlation, electrolyte properties, diffusion coefficient, Redox Fluss Batterie, Redox-Flow Batterie, Vanadium, Mathematisches Model, 2D Model, zweidimensionales Model, Validierung, Potentialmesssonde, Pseudoreferenzelektrode, Stromdichteverteilung, elektrochemische Kinetik, Kinetik, Austauschstromdichte, Reaktionsgeschwindigkeitskonstante, Ladungsübertragungswiderstand, Ladungsübertragungskoeffizient, Tafelsteigung, Kohlenstofffilz, Membranwiderstand, Impedanzspektroskopie, Nyquist-Diagramm, Kohlenstofffilzwiderstand, Polarisationskurve, UI-Kennlinie, Festphasenpotentialmesssonde, Flüssigphasenpotentialmesssonde, Redox-Potential, Stofftransport, Stofftransportkoeffizient, Sherwoodzahl, Reynoldszahl, Stofftransportkorrelation, Elektrolyteigenschaften, Diffusionskoeffizient
Beschreibung

Redox-Flow batteries can play a crucial role in the future electricity supply in order to balance the time lag between the generation of electrical energy from photovoltaics or wind power and the demand for electrical energy. However, to deploy the technology on a large scale, significant cost reductions are required. A thorough knowledge of the reactions and processes taking place within a redox-flow battery is very helpful for this task and this knowledge can be significantly improved by using a suitable mathematical model to describe the processes in a single cell of a redox-flow battery. Nevertheless, this requires a valid model that has been compared with experimental data and that can reproduce these data plausibly and validly.
In this thesis, the validation of a two-dimensional model for the description of potential and current density distributions in the porous electrodes of a vanadium redox-flow battery is presented, taking into account effects of kinetics and mass transport. Newly developed potential probes are used for in-situ measurement of solid and liquid phase potentials within a single cell of a vanadium redox-flow battery. The description of the measured cell voltage and potential probe signals by the model reveals a good congruence between the model and the experimental data, so the model can be regarded as valid. Additional suggestions for improvements of the model and the implementation of further models describing membrane crossover effects or electrolyte properties are given.