Fachbereiche | |
---|---|
Buchreihen (96) |
1331
|
Geisteswissenschaften |
2308
|
Naturwissenschaften |
5357
|
Mathematik | 225 |
Informatik | 314 |
Physik | 976 |
Chemie | 1354 |
Geowissenschaften | 131 |
Humanmedizin | 242 |
Zahn-, Mund- und Kieferheilkunde | 10 |
Veterinärmedizin | 100 |
Pharmazie | 147 |
Biologie | 830 |
Biochemie, Molekularbiologie, Gentechnologie | 117 |
Biophysik | 25 |
Ernährungs- und Haushaltswissenschaften | 44 |
Land- und Agrarwissenschaften | 996 |
Forstwissenschaften | 201 |
Gartenbauwissenschaft | 20 |
Umweltforschung, Ökologie und Landespflege | 145 |
Ingenieurwissenschaften |
1753
|
Allgemein |
92
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Leseprobe, PDF (130 KB)
Inhaltsverzeichnis, PDF (51 KB)
In order to improve knowledge on macromolecular structural formation and self-assembly, this work proposes a physics-based and data-driven multiscale modeling framework capable of describing structural formation on micro-meter and milli-second scales near molecular-level precision. The framework abstracts macromolecules as anisotropic unit objects and models the interactions and environment using data-driven approaches. The models are parameterized in a bottom-up fashion and validated top-down by comparison with literature and collaborator data for self-assembly of three model system: alginate gelation, hepatitis B virus capsids, and the pyruvate dehydrogenase complex.
ISBN-13 (Printausgabe) | 9783736979727 |
ISBN-13 (E-Book) | 9783736969728 |
Sprache | Englisch |
Seitenanzahl | 296 |
Umschlagkaschierung | matt |
Auflage | 1. |
Buchreihe | SPE-Schriftenreihe |
Band | 25 |
Erscheinungsort | Göttingen |
Promotionsort | TU Hamburg |
Erscheinungsdatum | 27.02.2024 |
Allgemeine Einordnung | Dissertation |
Fachbereiche |
Biochemie, Molekularbiologie, Gentechnologie
Biophysik Maschinenbau und Verfahrenstechnik |
Schlagwörter | multiscale modeling, molecular modeling, Molecular Discrete Element Method, MDEM, Discrete Element Method, DEM, coarse-graining, Molecular Dynamics, MD, Langevin dynamics, machine learning, ML, supervised learning, Kriging, macromolecular self-assembly, structural formation simulation, anisotropic macromolecules, assembly pathways, assembly kinetics, molecular collisions, 6D intermolecular interaction potentials, specialized force-fields, molecular binding, bonded interaction, hepatitis B core antigen, HBcAg, capsid formation, virus-like particles, VLP, pyruvate dehydrogenase complex, PDC, alginate, alginic acid, biopolymer, gelation, gel, aerogel, porous nanomaterial, anisotropic diffusion, ion binding model, calcium, proteins, enzymes, multi-enzymatic biocatalysis, metabolic channeling, high performance computing, HLRS, GPU implementation, MUSEN |