| Fachbereiche | |
|---|---|
| Buchreihen (96) |
1377
|
| Nachhaltigkeit |
3
|
| Gesundheitswesen |
1
|
| Geisteswissenschaften |
2361
|
| Naturwissenschaften |
5403
|
| Mathematik | 229 |
| Informatik | 318 |
| Physik | 979 |
| Chemie | 1362 |
| Geowissenschaften | 131 |
| Humanmedizin | 243 |
| Zahn-, Mund- und Kieferheilkunde | 10 |
| Veterinärmedizin | 108 |
| Pharmazie | 147 |
| Biologie | 835 |
| Biochemie, Molekularbiologie, Gentechnologie | 121 |
| Biophysik | 25 |
| Ernährungs- und Haushaltswissenschaften | 45 |
| Land- und Agrarwissenschaften | 1004 |
| Forstwissenschaften | 201 |
| Gartenbauwissenschaft | 20 |
| Umweltforschung, Ökologie und Landespflege | 148 |
| Ingenieurwissenschaften |
1788
|
| Allgemein |
97
|
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
|
Leseprobe, PDF (130 KB)
Inhaltsverzeichnis, PDF (51 KB)
In order to improve knowledge on macromolecular structural formation and self-assembly, this work proposes a physics-based and data-driven multiscale modeling framework capable of describing structural formation on micro-meter and milli-second scales near molecular-level precision. The framework abstracts macromolecules as anisotropic unit objects and models the interactions and environment using data-driven approaches. The models are parameterized in a bottom-up fashion and validated top-down by comparison with literature and collaborator data for self-assembly of three model system: alginate gelation, hepatitis B virus capsids, and the pyruvate dehydrogenase complex.
| ISBN-13 (Printausgabe) | 9783736979727 |
| ISBN-13 (E-Book) | 9783736969728 |
| Buchendformat | B5 |
| Sprache | Englisch |
| Seitenanzahl | 296 |
| Umschlagkaschierung | matt |
| Auflage | 1. |
| Buchreihe | SPE-Schriftenreihe |
| Band | 25 |
| Erscheinungsort | Göttingen |
| Promotionsort | TU Hamburg |
| Erscheinungsdatum | 27.02.2024 |
| Allgemeine Einordnung | Dissertation |
| Fachbereiche |
Biochemie, Molekularbiologie, Gentechnologie
Biophysik Maschinenbau und Verfahrenstechnik |
| Schlagwörter | multiscale modeling, molecular modeling, Molecular Discrete Element Method, MDEM, Discrete Element Method, DEM, coarse-graining, Molecular Dynamics, MD, Langevin dynamics, machine learning, ML, supervised learning, Kriging, macromolecular self-assembly, structural formation simulation, anisotropic macromolecules, assembly pathways, assembly kinetics, molecular collisions, 6D intermolecular interaction potentials, specialized force-fields, molecular binding, bonded interaction, hepatitis B core antigen, HBcAg, capsid formation, virus-like particles, VLP, pyruvate dehydrogenase complex, PDC, alginate, alginic acid, biopolymer, gelation, gel, aerogel, porous nanomaterial, anisotropic diffusion, ion binding model, calcium, proteins, enzymes, multi-enzymatic biocatalysis, metabolic channeling, high performance computing, HLRS, GPU implementation, MUSEN |