Fachbereiche | |
---|---|
Buchreihen (95) |
1329
|
Geisteswissenschaften |
2300
|
Naturwissenschaften |
5356
|
Mathematik | 224 |
Informatik | 314 |
Physik | 975 |
Chemie | 1354 |
Geowissenschaften | 131 |
Humanmedizin | 242 |
Zahn-, Mund- und Kieferheilkunde | 10 |
Veterinärmedizin | 100 |
Pharmazie | 147 |
Biologie | 830 |
Biochemie, Molekularbiologie, Gentechnologie | 117 |
Biophysik | 25 |
Ernährungs- und Haushaltswissenschaften | 44 |
Land- und Agrarwissenschaften | 996 |
Forstwissenschaften | 201 |
Gartenbauwissenschaft | 20 |
Umweltforschung, Ökologie und Landespflege | 145 |
Ingenieurwissenschaften |
1751
|
Allgemein |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Leseprobe, PDF (750 KB)
Inhaltsverzeichnis, PDF (100 KB)
Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Anwendung tiefer grafischer Modelle zur Kausalitätsanalyse, insbesondere in multivariaten Zeitreihen. Ein Schwerpunkt liegt dabei auf der Berücksichtigung versteckter Störfaktoren und der Analyse nichtlinearer Zusammenhänge.
Durch die Integration von Expertenwissen und den Einsatz von Proxy-Variablen können komplexe kausale Strukturen in verrauschten Daten, die über nichtlineare Kausalverknüpfungen miteinander verbunden sind und von versteckten Störfaktoren beeinflusst sind, aufgedeckt werden. Die entwickelten Methoden ermöglichen nicht nur die Schätzung der Intensität kausaler Zusammenhänge, sondern auch die Detektion und Attribution von Anomalien in multivariaten Zeitreihen.
Ein weiterer Beitrag dieser Arbeit ist die Entwicklung einer neuen datengetriebenen Methode zur Partitionierung des Netto-Ökosystem-Austauschs (engl. net ecosystem exchange). Durch die Anwendung eines tiefen Zustandsraummodells können die Tageswerte der Ökosystematmung geschätzt werden, was für das Verständnis des Klimawandels von großer Bedeutung ist.
ISBN-13 (Printausgabe) | 9783689520885 |
ISBN-13 (E-Book) | 9783689520892 |
Sprache | Englisch |
Seitenanzahl | 296 |
Umschlagkaschierung | matt |
Auflage | 1. |
Erscheinungsort | Göttingen |
Promotionsort | Friedrich-Schiller-Universität Jena |
Erscheinungsdatum | 31.07.2024 |
Allgemeine Einordnung | Dissertation |
Fachbereiche |
Informatik
|
Schlagwörter | Kausalitätsanalyse, Causality analysis, Tiefe grafische Modelle, Deep graphical models, Probabilistische graphische Modelle, Probabilistic graphical models, Multivariate Zeitreihen, Multivariate time series, Anomalieerkennung, Anomaly detection, Anomalieattribution, Anomaly attribution, Umweltwissenschaft, Environmental science, Klimawandel, Climate change, Verborgene Störfaktoren, Hidden confounding, Nichtlineare kausale Zusammenhänge, Nonlinear causal links, Netto-Ökosystem-Austausch (NEE), Net Ecosystem Exchange (NEE), Deep Learning, Deep learning, Kontrafaktisches Denken, Counterfactual reasoning, Variationale Inferenz, Variational inference, Tiefes Zustandsraummodell, Deep state space model, Causal effect variational autoencoder (CEVAE), Causal effect variational autoencoder (CEVAE), Knockoffs, Granger-Kausalität, Granger causality, Datenimputation, Data imputation, Datenlückenfüllung, Gap filling, Kausalinferenz, Causal inference, Zeitreihenvorhersage, Time series forecasting, Extreme Klimaereignisse, Extreme climate events, Hurrikanattribution, Hurricanes attribution, Dürreattribution, Droughts attribution, Hitzewellenattribution, Heatwaves attribution, Ökosysteme, Ecosystems |