Cuvillier Verlag

36 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Error Functions – Approximations and Implementations with modern FORTRAN

Printausgabe
EUR 78,21

E-Book
EUR 54,75

Error Functions – Approximations and Implementations with modern FORTRAN

Volume I: erf, erfc, erfcx

Thomas Höring (Autor)

Vorschau

Leseprobe, PDF (450 KB)
Inhaltsverzeichnis, PDF (170 KB)

The Error Function is used in many areas of mathematics, statistics, science and scientific applications such as error probability in signal detection, option pricing, diffusion, heat equation, modeling of magnetization, transitions between two planes, nonlinearities in the amplifier, rubbery materials and soft tissue.
Error Functions, Volume I: erf, erfc and erfcx is the first comprehensive collection of multi-precision implementations in modern module-oriented FORTRAN for GFortran and Silverfrost FTN 95.
The accuracy of many approximate values is up to 32 digits. New approximations, especially for the scaled complementary error function (erfcx), show better performance than some standard intrinsic functions.
The implementation methods are mainly rational functions, Chebyshev series and rational Chebyshev functions, series expansions and continued fractions.
A menu-driven test program guides through the various error functions. The complete source code of all functions and the test program is available at
https://cuvillier.de/de/error-functions

ISBN-13 (Printausgabe) 9783689527747
ISBN-13 (E-Book) 9783689527754
Sprache Englisch
Seitenanzahl 252
Umschlagkaschierung matt
Auflage 1
Erscheinungsort Göttingen
Erscheinungsdatum 06.03.2025
Allgemeine Einordnung Sachbuch
Fachbereiche Mathematik
Informatik
Schlagwörter error function, Fehlerfunktion, erf, complementary error function, komplementäre Fehlerfunktion, erfc, scaled complementary error function, skalierte komplementäre Fehlerfunktion, erfcx, Fortran, GNU FORTRAN, SILVERFROST FTN95, source code, Quellcode, multi-precision, high precision, high accuracy, RationalFunction, Rationale Funktion, Chebyshev Series, Chebyshev Expansion, Rational Chebyshev Approximation, Maclaurin Expansion, Series Expansion, Power Expansion, Reihenentwicklung, Continued Fraction, Kettenbruch, Padé approximation, Approximation, Implementation, Algorithm, Algorithmus,