Las cookies nos ayudan a ofrecer nuestros servicios. Al utilizar nuestros servicios, aceptas el uso de cookies.

Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Lecture Notes in Real Algebraic and Analytic Geometry

Impresion
EUR 24,00 EUR 0,00

E-Book
EUR 0,00

Lecture Notes in Real Algebraic and Analytic Geometry (Tienda española)

D. Richardson (Autor)
A.J. Wilkie (Autor)
Mario J. Edmundo (Autor)

ISBN-10 (Impresion) 386537557X
ISBN-13 (Impresion) 9783865375575
ISBN-13 (E-Book) 9783736915572
Idioma Deutsch
Numero de paginas 210
Edicion 1
Volumen 0
Lugar de publicacion Göttingen
Fecha de publicacion 21.08.2005
Clasificacion simple Proceeding
Area Matemática
Palabras claves Proceeding
Descripcion

We presume throughout some familiarity with basic model theory, in particular with the notion of a definable set. An excellent reference is 24. A dense linearly ordered structure
M= (M,<, . . .)
is o-minimal (short for ordered-minimal) if every definable set (with parameters) is the union of finitely many points and open intervals (a, b), where a < b and a, b ∈ M ∪ {±∞}. The “minimal” in o-minimal reflects the fact that the definable subsets in one variable of such a structure M form the smallest collection possible: they are exactly those sets that must be definable in the presence of a linear order. This definition is the ordered analogue of minimal structures, those whose definable sets are finite or cofinite, that is, whose definable sets are those that must be definable (in the presence of equality) in every structure. The more familiar strongly minimal structures have the property every elementarily equivalent structure is minimal. Not every minimal structure is strongly minimal; see 2.9 below for the surprising situation in the ordered context.