Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Lecture Notes in Real Algebraic and Analytic Geometry

Printausgabe
EUR 24,00 EUR 22,80

E-Book
EUR 0,00

Lecture Notes in Real Algebraic and Analytic Geometry

D. Richardson (Autor)
A.J. Wilkie (Autor)
Mario J. Edmundo (Autor)

ISBN-13 (Printausgabe) 386537557X
ISBN-13 (Printausgabe) 9783865375575
ISBN-13 (E-Book) 9783736915572
Sprache Deutsch
Seitenanzahl 210
Auflage 1
Band 0
Erscheinungsort Göttingen
Erscheinungsdatum 21.08.2005
Allgemeine Einordnung Proceeding
Fachbereiche Mathematik
Schlagwörter Proceeding
Beschreibung

We presume throughout some familiarity with basic model theory, in particular with the notion of a definable set. An excellent reference is 24. A dense linearly ordered structure
M= (M,<, . . .)
is o-minimal (short for ordered-minimal) if every definable set (with parameters) is the union of finitely many points and open intervals (a, b), where a < b and a, b ∈ M ∪ {±∞}. The “minimal” in o-minimal reflects the fact that the definable subsets in one variable of such a structure M form the smallest collection possible: they are exactly those sets that must be definable in the presence of a linear order. This definition is the ordered analogue of minimal structures, those whose definable sets are finite or cofinite, that is, whose definable sets are those that must be definable (in the presence of equality) in every structure. The more familiar strongly minimal structures have the property every elementarily equivalent structure is minimal. Not every minimal structure is strongly minimal; see 2.9 below for the surprising situation in the ordered context.