Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Färbungen von Distanzgraphen

Impresion
EUR 18,05 EUR 17,15

E-Book
EUR 12,64

Färbungen von Distanzgraphen (Tienda española)

Massimiliano Marangio (Autor)

Previo

Lectura de prueba, PDF (110 KB)
Indice, PDF (49 KB)

Sei D eine Menge positiver reeller Zahlen und S eine nichtleere Teilmenge des n-dimensionalen euklidischen Raums. Der Distanzgraph G(S,D) ist der Graph mit Knotenmenge S, in dem zwei Knoten genau dann benachbart sind, wenn ihr euklidischer Abstand in D enthalten ist.

Es werden verschiedene Arten von Färbungen von Distanzgraphen untersucht, unter anderem Knoten-, Kanten- und Totalfärbungen sowie die Listenversionen dieser Färbungen. Gelten gewisse Symmetriebedingungen, so ist Δ/2+1 eine obere Schranke für die (listen-) chromatische Zahl. Es wird gezeigt, dass die (listen-) kantenchromatische Zahl gleich Δ und die (listen-) totalchromatische Zahl ist gleich Δ+1 ist, wobei Δ den Maximalgrad des Distanzgraphen bezeichnet. Dadurch werden die Totalfärbungsvermutung, die Listenkanten- und die Listentotalfärbungsvermutung für eine Klasse von Distanzgraphen bewiesen. Zuletzt werden verallgemeinerte Färbungen untersucht, die durch Betrachtung von speziellen Grapheneigenschaften aus den klassischen Färbungen hervorgehen.

Let D be a set of positive real numbers and S a nonempty subset of the n-dimensional Euclidean space. The distance graph G(S,D) is the graph with vertex set S, and two vertices are adjacent if and only if their Euclidean distance is an element of D.

Different types of colorings of distance graphs are studied, among others vertex, edge, and total colorings and the list versions of these colorings. If some symmetry conditions are fulfilled, then Δ/2+1 is an upper bound for the (list) chromatic number. The (list) edge chromatic number is proved to be Δ, and the (list) total chromatic number to be Δ+1, where Δ is the maximum degree of the distance graph. Therefore, the total coloring conjecture, the list edge coloring conjecture and the list total coloring conjecture are proved for a class of distance graphs. Moreover, generalized colorings are considered which arise from the classical colorings by using specific graph properties.

ISBN-13 (Impresion) 9783954041565
ISBN-13 (E-Book) 9783736941564
Idioma Deutsch
Numero de paginas 114
Laminacion de la cubierta mate
Edicion 1. Aufl.
Lugar de publicacion Göttingen
Lugar de la disertacion Braunschweig
Fecha de publicacion 04.09.2012
Clasificacion simple Tesis doctoral
Area Matemática
Palabras claves Reine Mathematik