Las cookies nos ayudan a ofrecer nuestros servicios. Al utilizar nuestros servicios, aceptas el uso de cookies.

Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Transition Metals and Silicon

Impresion
EUR 0,00

E-Book
EUR 0,00

Transition Metals and Silicon (Tienda española)

Magnetic Properties of Thin Films, Impurities, and Heusler Alloys on the Atomic Scale

Benjamin Geisler (Autor)

Previo

Indice, PDF (48 KB)
Lectura de prueba, PDF (170 KB)

ISBN-13 (Impresion) 9783954049448
ISBN-13 (E-Book) 9783736949447
Idioma Inglés
Numero de paginas 236
Laminacion de la cubierta Brillante
Edicion 1. Aufl. Hardcover
Lugar de publicacion Göttingen
Lugar de la disertacion Duisburg-Essen
Fecha de publicacion 12.03.2015
Clasificacion simple Tesis doctoral
Area Física
Física de materia condensada ( incluyendo física de cuerpos solidos, optica)
Palabras claves magnetism, silicon, transition metals, silicides, Heusler alloys, spin-polarized scanning tunneling microscopy, density functional theory, hybrid functionals, electronic correlations, spintronics, spincalorics, surfaces, interfaces, thin films, dilute magnetic semiconductors, impurity clusters, magnetic organic molecules, magnetic tunnel junctions
Descripcion

The present, richly illustrated book takes the reader on a tour through the field of modern spintronics, discussing key aspects such as ferromagnetic thin films, dilute magnetic semiconductors, and magnetic tunnel junctions. It demonstrates different approaches to a detailed understanding of magnetism and materials properties on the atomic scale, as required by the ongoing miniaturization of electronics. Due to their technological relevance, the focus lies on silicon and different transition metals like chromium, manganese, and iron.

Among others, the following questions are addressed from the viewpoint of state-of-the-art computational physics: Is the scanning tunneling microscope capable of resolving even complex film atomic structures? How can we use its spin-sensitive form to gain insight into interactions of magnetic impurities in bulk semiconductors? Why is chromium-doped silicon especially interesting? Does one need a Seebeck coefficient to obtain spincaloric properties ab initio?