Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

Premiumpartner
De En Es
Titelbild-leitlinien
Transition Metals and Silicon

Printausgabe
EUR 88,00

E-Book
EUR 61,60

Transition Metals and Silicon

Magnetic Properties of Thin Films, Impurities, and Heusler Alloys on the Atomic Scale

Benjamin Geisler (Autor)

Vorschau

Inhaltsverzeichnis, PDF (48 KB)
Leseprobe, PDF (170 KB)

ISBN-13 (Printausgabe) 9783954049448
ISBN-13 (E-Book) 9783736949447
Sprache Englisch
Seitenanzahl 236
Umschlagkaschierung glänzend
Auflage 1. Aufl. Hardcover
Erscheinungsort Göttingen
Promotionsort Duisburg-Essen
Erscheinungsdatum 12.03.2015
Allgemeine Einordnung Dissertation
Fachbereiche Physik
Physik der kondensierten Materie (einschließlich Festkörperphysik, Optik)
Schlagwörter magnetism, silicon, transition metals, silicides, Heusler alloys, spin-polarized scanning tunneling microscopy, density functional theory, hybrid functionals, electronic correlations, spintronics, spincalorics, surfaces, interfaces, thin films, dilute magnetic semiconductors, impurity clusters, magnetic organic molecules, magnetic tunnel junctions
Beschreibung

The present, richly illustrated book takes the reader on a tour through the field of modern spintronics, discussing key aspects such as ferromagnetic thin films, dilute magnetic semiconductors, and magnetic tunnel junctions. It demonstrates different approaches to a detailed understanding of magnetism and materials properties on the atomic scale, as required by the ongoing miniaturization of electronics. Due to their technological relevance, the focus lies on silicon and different transition metals like chromium, manganese, and iron.

Among others, the following questions are addressed from the viewpoint of state-of-the-art computational physics: Is the scanning tunneling microscope capable of resolving even complex film atomic structures? How can we use its spin-sensitive form to gain insight into interactions of magnetic impurities in bulk semiconductors? Why is chromium-doped silicon especially interesting? Does one need a Seebeck coefficient to obtain spincaloric properties ab initio?