Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
An Eulerian Discontinuous Galerkin Method for the Numerical Simulation of Interfacial Transport

EUR 41,25

EUR 0,00

PDF (2,4 MB)
Open Access CC BY 4.0

An Eulerian Discontinuous Galerkin Method for the Numerical Simulation of Interfacial Transport (Tienda española)

Christina Kallendorf (Autor)


Lectura de prueba, PDF (130 KB)
Indice, PDF (51 KB)

ISBN-13 (Impresion) 9783736994881
ISBN-13 (E-Book) 9783736984882
Idioma Inglés
Numero de paginas 160
Laminacion de la cubierta mate
Edicion 1. Aufl.
Lugar de publicacion Göttingen
Lugar de la disertacion Darmstadt
Fecha de publicacion 02.03.2017
Clasificacion simple Tesis doctoral
Area Ingeniería mecánica y de proceso
Palabras claves Discontinuous Galerkin method, Numercial simulation, interfacial transport problems in two-phase flows, Surfactants, Eulerian Discountinuous Galerkin method, Level Set method, Stokes flow, incompressible flow, Direct Construction method

In various areas of interest, it is important to model, simulate and compute processes on surfaces. In fluid mechanics, a topic of increasing importance is the transport of mass, energy or momentum on phase interfaces. These processes are modelled by partial differential equations on the phase interface and therefore, on moving surfaces that may change rapidly with respect to geometry and topology.

In the present work, a numerical framework for solving interfacial convection-diffusion problems based on a Discontinuous Galerkin method is established. In contrast to most traditional approaches, the method introduced here maintains the original Eulerian grid as well as an implicit representation of the interface, rather than establishing a Lagrangian, i.e. interfacial grid. An MPI parallelized and modular software package for the numerical approximation of interfacial transport problems by polynomials of arbitrary order is presented. Well-posedness of the problem and computational efficiency are achieved by a narrow band structure around the moving interface. A pseudo-timestepping method is provided by which extended quantities can be extrapolated to new cells in this dynamic Narrow Band while being accurately preserved on the interface. The method constructed is then used to investigate different interfacial transport problems with and without diffusion numerically.