Cuvillier Verlag

35 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Mechanical Analysis of PEM Fuel Cell Stack Design

Printausgabe
EUR 32,00

E-Book
EUR 0,00

Download
PDF (6,5 MB)
Open Access CC BY 4.0

Mechanical Analysis of PEM Fuel Cell Stack Design

Ahmet Evren Firat (Autor)

Vorschau

Inhaltsverzeichnis, PDF (74 KB)
Leseprobe, PDF (680 KB)

ISBN-13 (Printausgabe) 9783736992573
ISBN-13 (E-Book) 9783736982574
Sprache Englisch
Seitenanzahl 130
Auflage 1. Aufl.
Erscheinungsort Göttingen
Promotionsort Duisburg-Essen
Erscheinungsdatum 02.06.2016
Allgemeine Einordnung Dissertation
Fachbereiche Mathematik
Angewandte Mathematik
Chemie
Technische Chemie und Chemieingenieurwesen
Allgemeine Ingenieurwissenschaften
Technische Mechanik, Strömungsmechanik, Thermodynamik
Maschinenbau und Verfahrenstechnik
Konstruktionstechnik
Fertigungs- und Produktionstechnik
Strömungs- und Kolbenmaschinen
Fahrzeugtechnik
Umwelttechnik
Elektrotechnik
Energietechnik
Schlagwörter FEM, Fuel Cell, PEM, Polymer electrolyte Membrane, Mechanical Analysis, Fuel Cell Performance, Fuel Cell Analysis, Electrochemistry, Electrochemical Analysis, Fluid Mechanics, Flow Field, Thermal Expansion, Thermomechanics, Fuel Cell Stack, Membrane, Pressure Distribution, Finite Element Method, Finite Element Analysis, Multiphysics, Multiphysical modeling, Simulation, Computational Analysis, Permeability, Porosity, Gas Diffusion Layer, Computational Fluid Dynamics, CFD, Mole Fraction, Mass Fraction, Potential, Thermal Distribution, Temperature, Humidity, Contact Pressure, Bipolar Plate, Structural Mechanics, Thermal Expansion, Elongation, Shrinkage, Thickness, Material Modeling, Silicon Sealing, Proton Exchange Membrane, Water Transport, Nafion, Membrane Electrode Assembly, Hydrogen, Durability, Tightness, Fuel Cell Stack Design, Cost, Life Span, Computer Aided Design, CAD, Computer Aided Analysis, Computer Aided Engineering, Computation, Cooling, Numerical Analysis, Polarization Curve, Polarisation Curve, Optimisation, Optimization, UI-Kennlinie, Electrical Current, Electrical, Energy Convertion, Strain, Stress, Displacement, Stoichiometry, Operation, Compound, Graphite, Measurement, Electromobility, Renewable Energy Sources, Sustainable Energy, Storage, Environment, Emission, Clean Energy, Compression, Endplate, Tie Rods FEM, Brennstoffzelle, PEM, Polymer Elektrolyte Membrane, Polymer Membrane, Mechanische Analyse, Brennstoffzellenleistung, Brennstoffzellen Analyse, Brennstoffzellenstack, Strömungsmechanik, Flow Field Kanäle, Thermische Ausdehnung, Auslenkung, Längenänderung, Thermomechanik, Membran, Druckverteilung, Finite Elemente Methode, Finite Elemente Analyse, Multiphysik, Multiphysikalische Modellierung, Simulation, Rechnergestützte Analyse, Berechnungsmodelle, Berechnung, Permeabilität, Porosität, Gasdiffusionsschicht, Numerische Strömungsmechanik, CFD , Stoffmengenanteil, Molare Maße, Massenanteil, Potenzial, Temperatur Verteilung, Temperatur, Verschiebung, Dehnung, Schrumpfung, Länge, Dicke, Material Modellierung, Silikondichtung, Dichtung, Dichtigkeit, Proton-Austausch-Membrane, Wassertransport, Nafion, Membrane Electrode Assembly, Wasserstoff, Lebensdauer, Brennstoffzellenstack, Brennstoffzellenstackdesign, Kosten, Rechnergestützte Design, Rechnergestützte Analyse, Berechnung, Kühlung, Numerische Analyse, Polarizationskurve, Strom-Spannungskennlinie, Strom, Elektrische Umwandlung, Energie Umwandlung, Optimierung, U-I-Diagramm, Strukturmechanik, Strukturmechanische Analyse, Bipolarplatte, Spannung, Zerrung, Feuchte, Befeuchtung, Stöchiometrie, Betrieb, Compound, Graphit, Messungen, CAD, Elektromobilität, Erneuerbare Energien, Nachhaltige Energie, Speicherung, Umwelt, Saubere Energie, Verspannung, Verspannelemente, Endplate, Gewindestange
Beschreibung

Polymer electrolyte membrane (PEM) fuel cell stack was analyzed from a mechanical point of view with the help of measurements and simulations in this study.
The deflection of the fuel cell stack was measured with the help of the experimental set-up under operating conditions. The effects of cell operating parameters and cyclic conditions on the mechanical properties of the fuel cell stack were investigated.
In order to extend the mechanical analysis of the fuel cells, two computational models were established containing the geometrical features in detail. A large-scale fuel cell stack model was built for the thermomechanical analysis. The second model was built on a cross-section geometry for the electrochemical analysis including fluid dynamics. The internal stress distribution and buckling of fuel cell stack were examined. The influence of the mechanical compression on the cell performance and squeezing of the gas diffusion layers are investigated. A design procedure is developed for fuel cell stack regarding the durability and performance from a mechanical point of view.