Cuvillier Verlag

Publications, Dissertations, Habilitations & Brochures.
International Specialist Publishing House for Science and Economy

Cuvillier Verlag

De En Es
Mechanical Analysis of PEM Fuel Cell Stack Design

Hard Copy
EUR 32.00

EUR 0.00

PDF (6.5 MB)
Open Access CC BY 4.0

Mechanical Analysis of PEM Fuel Cell Stack Design (English shop)

Ahmet Evren Firat (Author)


Table of Contents, PDF (74 KB)
Extract, PDF (680 KB)

ISBN-13 (Hard Copy) 9783736992573
ISBN-13 (eBook) 9783736982574
Language English
Page Number 130
Edition 1. Aufl.
Publication Place Göttingen
Place of Dissertation Duisburg-Essen
Publication Date 2016-06-02
General Categorization Dissertation
Departments Mathematics
Applied mathematics
Industrial chemistry and chemical engineering
Technical mechanics
Mechanical and process engineering
Construction technology
Manufacturing and production engineering
Fluid kinetic machines and reciprocating machines
Automotive engineering
Environmental technology
Electrical engineering
Energy engineering
Keywords FEM, Fuel Cell, PEM, Polymer electrolyte Membrane, Mechanical Analysis, Fuel Cell Performance, Fuel Cell Analysis, Electrochemistry, Electrochemical Analysis, Fluid Mechanics, Flow Field, Thermal Expansion, Thermomechanics, Fuel Cell Stack, Membrane, Pressure Distribution, Finite Element Method, Finite Element Analysis, Multiphysics, Multiphysical modeling, Simulation, Computational Analysis, Permeability, Porosity, Gas Diffusion Layer, Computational Fluid Dynamics, CFD, Mole Fraction, Mass Fraction, Potential, Thermal Distribution, Temperature, Humidity, Contact Pressure, Bipolar Plate, Structural Mechanics, Thermal Expansion, Elongation, Shrinkage, Thickness, Material Modeling, Silicon Sealing, Proton Exchange Membrane, Water Transport, Nafion, Membrane Electrode Assembly, Hydrogen, Durability, Tightness, Fuel Cell Stack Design, Cost, Life Span, Computer Aided Design, CAD, Computer Aided Analysis, Computer Aided Engineering, Computation, Cooling, Numerical Analysis, Polarization Curve, Polarisation Curve, Optimisation, Optimization, UI-Kennlinie, Electrical Current, Electrical, Energy Convertion, Strain, Stress, Displacement, Stoichiometry, Operation, Compound, Graphite, Measurement, Electromobility, Renewable Energy Sources, Sustainable Energy, Storage, Environment, Emission, Clean Energy, Compression, Endplate, Tie Rods FEM, Brennstoffzelle, PEM, Polymer Elektrolyte Membrane, Polymer Membrane, Mechanische Analyse, Brennstoffzellenleistung, Brennstoffzellen Analyse, Brennstoffzellenstack, Strömungsmechanik, Flow Field Kanäle, Thermische Ausdehnung, Auslenkung, Längenänderung, Thermomechanik, Membran, Druckverteilung, Finite Elemente Methode, Finite Elemente Analyse, Multiphysik, Multiphysikalische Modellierung, Simulation, Rechnergestützte Analyse, Berechnungsmodelle, Berechnung, Permeabilität, Porosität, Gasdiffusionsschicht, Numerische Strömungsmechanik, CFD , Stoffmengenanteil, Molare Maße, Massenanteil, Potenzial, Temperatur Verteilung, Temperatur, Verschiebung, Dehnung, Schrumpfung, Länge, Dicke, Material Modellierung, Silikondichtung, Dichtung, Dichtigkeit, Proton-Austausch-Membrane, Wassertransport, Nafion, Membrane Electrode Assembly, Wasserstoff, Lebensdauer, Brennstoffzellenstack, Brennstoffzellenstackdesign, Kosten, Rechnergestützte Design, Rechnergestützte Analyse, Berechnung, Kühlung, Numerische Analyse, Polarizationskurve, Strom-Spannungskennlinie, Strom, Elektrische Umwandlung, Energie Umwandlung, Optimierung, U-I-Diagramm, Strukturmechanik, Strukturmechanische Analyse, Bipolarplatte, Spannung, Zerrung, Feuchte, Befeuchtung, Stöchiometrie, Betrieb, Compound, Graphit, Messungen, CAD, Elektromobilität, Erneuerbare Energien, Nachhaltige Energie, Speicherung, Umwelt, Saubere Energie, Verspannung, Verspannelemente, Endplate, Gewindestange

Polymer electrolyte membrane (PEM) fuel cell stack was analyzed from a mechanical point of view with the help of measurements and simulations in this study.
The deflection of the fuel cell stack was measured with the help of the experimental set-up under operating conditions. The effects of cell operating parameters and cyclic conditions on the mechanical properties of the fuel cell stack were investigated.
In order to extend the mechanical analysis of the fuel cells, two computational models were established containing the geometrical features in detail. A large-scale fuel cell stack model was built for the thermomechanical analysis. The second model was built on a cross-section geometry for the electrochemical analysis including fluid dynamics. The internal stress distribution and buckling of fuel cell stack were examined. The influence of the mechanical compression on the cell performance and squeezing of the gas diffusion layers are investigated. A design procedure is developed for fuel cell stack regarding the durability and performance from a mechanical point of view.