Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

Premiumpartner
De En Es
Ortsaufgelöste Photoemissionsuntersuchungen von plasmonischen Anregungen in organisch-anorganischen Hybridsystemen mit PEEM

Printausgabe
EUR 56,40

E-Book
EUR 39,48

Ortsaufgelöste Photoemissionsuntersuchungen von plasmonischen Anregungen in organisch-anorganischen Hybridsystemen mit PEEM

Massimo Morresi (Autor)

Vorschau

Inhaltsverzeichnis, PDF (30 KB)
Leseprobe, PDF (320 KB)

ISBN-13 (Printausgabe) 9783736992597
ISBN-13 (E-Book) 9783736982598
Sprache Deutsch
Seitenanzahl 204
Umschlagkaschierung glänzend
Auflage 1. Aufl.
Erscheinungsort Göttingen
Promotionsort Kaiserslautern
Erscheinungsdatum 02.06.2016
Allgemeine Einordnung Dissertation
Fachbereiche Physik
Physik der kondensierten Materie (einschließlich Festkörperphysik, Optik)
Physik der Atome, Moleküle, Gase und Plasmen
Beschreibung

Diese Arbeit beschäftigt sich mit der Untersuchung der Beeinflussung des Photoemissionsverhaltens von plasmonischen Anregungen in Metallen durch den organischen Halbleiter Aluminium-tris(8-hydroxychinolin) (Alq3) und möglichen zugrunde liegenden Wechselwirkungsmechanismen. Die Wechselwirkung zwischen Licht und Materie ist geprägt von den komplexen dielektrischen Funktionen der beteiligten Materialien. Während die dielektrische Funktion von Alq3 bei 800 nm real ist, ist sie bei 400 nm komplex, weist also einen endlichen Imaginärteil auf, der zur Absorption eines Teils des anregenden elektromagnetischen Felds sorgt. Aufgrund dieser optischen Eigenschaften werden in Metallen angeregte Plasmonen und deren Beeinflussung durch Alq3 bei unterschiedlichen Energien mit Hilfe eines Photoemissions-Elektronenmikroskops (PEEM) untersucht. Diese Untersuchungen stellen die Grundlage für die Manipulation sowie künftige Kontrolle des plasmonischen Signaltransports auf der Nanometerskala dar.