Cuvillier Verlag

35 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Advanced Nanoarchitectures with Photocatalytic Functionality

Printausgabe
EUR 69,90

E-Book
EUR 0,00

Download
PDF (8 MB)
Open Access CC BY 4.0

Advanced Nanoarchitectures with Photocatalytic Functionality

Ying-Chu Chen (Autor)

Vorschau

Leseprobe, PDF (830 KB)
Inhaltsverzeichnis, PDF (50 KB)

ISBN-13 (Printausgabe) 9783736997806
ISBN-13 (E-Book) 9783736987807
Sprache Englisch
Seitenanzahl 166
Umschlagkaschierung glänzend
Auflage 1.
Erscheinungsort Göttingen
Promotionsort Karlsruhe
Erscheinungsdatum 23.04.2018
Allgemeine Einordnung Dissertation
Fachbereiche Chemie
Anorganische Chemie
Schlagwörter spikecube, nanopeapod, photocatalyst, dye photodegradation, water photoelectrolysis
Beschreibung

Two novel nanoarchitectures – including the highly branched spikecube exemplified by β-SnWO4 and the biomimetic nanopeapod manifested in Au@Nb@HxK1-xNbO3 – were put forward for the first time in this dissertation, particularly aiming at enriching the library of pattern designs for sunlight-driven photo(electro)chemical applications. Specifically, β-SnWO4 spikecubes were entitled on the basis of the peculiar morphology, wherein bundles of nanopillars were self-aligned with quasi-periodicity onto each sharp face of hexahedral cube cores. Moreover, this geometric engineering was particularly carried out on a Scheelite-type (ABO4) β-SnWO4 crystal with a visible-light-active band gap of 2.91 eV and subtle conduction and valence band positions, endowing the photoexcited electron-hole pairs on β-SnWO4 with strong reducing and oxidizing power, respectively. Consequently, an outstanding photocatalytic activity in degrading organic dyes was observed for the β-SnWO4 spikecube with an enhancement more than 150% in comparison with a benchmark visible-light-active WO3 photocatalyst. By contrast, the design of Au@Nb@HxK1-xNbO3 emulates the growth pattern of a natural plant – a peapod –, wherein sub-10 nm core-shell Au@Nb plasmonic bimetallics as the particulate peas seeded discretely inside the unidirectional cavity of the tubular HxK1-xNbO3 semiconductor as the pod. The biomimicry of this configuration endows the Au@Nb@HxK1-xNbO3 nanopeapods with strong light harvesting abilities, wherein the HxK1-xNbO3 nanopod and the Au@Nb nanopeas absorb ultraviolet and visible light via interband transition and surface plasmon resonance, respectively. More importantly, the strong near-field plasmon-plasmon coupling between neighboured Au@Nb nanoparticles allows the Au@Nb@HxK1-xNbO3 nanopeapod absorbing near-infrared light. Last but not least, dye photodegradation and water photoelectrolysis as proofs-of-concept manifested the full-spectrum utilization of diffusive solar energy by the Au@Nb@HxK1-xNbO3 nanopeapod for environmental remediation and fuel generation, respectively.