Departments | |
---|---|
Book Series (96) |
1330
|
Humanities |
2305
|
Natural Sciences |
5357
|
Mathematics | 225 |
Informatics | 314 |
Physics | 976 |
Chemistry | 1354 |
Geosciences | 131 |
Human medicine | 242 |
Stomatology | 10 |
Veterinary medicine | 100 |
Pharmacy | 147 |
Biology | 830 |
Biochemistry, molecular biology, gene technology | 117 |
Biophysics | 25 |
Domestic and nutritional science | 44 |
Agricultural science | 996 |
Forest science | 201 |
Horticultural science | 20 |
Environmental research, ecology and landscape conservation | 145 |
Engineering |
1752
|
Common |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Extract, PDF (830 KB)
Table of Contents, PDF (50 KB)
Two novel nanoarchitectures – including the highly branched spikecube exemplified by β-SnWO4 and the biomimetic nanopeapod manifested in Au@Nb@HxK1-xNbO3 – were put forward for the first time in this dissertation, particularly aiming at enriching the library of pattern designs for sunlight-driven photo(electro)chemical applications. Specifically, β-SnWO4 spikecubes were entitled on the basis of the peculiar morphology, wherein bundles of nanopillars were self-aligned with quasi-periodicity onto each sharp face of hexahedral cube cores. Moreover, this geometric engineering was particularly carried out on a Scheelite-type (ABO4) β-SnWO4 crystal with a visible-light-active band gap of 2.91 eV and subtle conduction and valence band positions, endowing the photoexcited electron-hole pairs on β-SnWO4 with strong reducing and oxidizing power, respectively. Consequently, an outstanding photocatalytic activity in degrading organic dyes was observed for the β-SnWO4 spikecube with an enhancement more than 150% in comparison with a benchmark visible-light-active WO3 photocatalyst. By contrast, the design of Au@Nb@HxK1-xNbO3 emulates the growth pattern of a natural plant – a peapod –, wherein sub-10 nm core-shell Au@Nb plasmonic bimetallics as the particulate peas seeded discretely inside the unidirectional cavity of the tubular HxK1-xNbO3 semiconductor as the pod. The biomimicry of this configuration endows the Au@Nb@HxK1-xNbO3 nanopeapods with strong light harvesting abilities, wherein the HxK1-xNbO3 nanopod and the Au@Nb nanopeas absorb ultraviolet and visible light via interband transition and surface plasmon resonance, respectively. More importantly, the strong near-field plasmon-plasmon coupling between neighboured Au@Nb nanoparticles allows the Au@Nb@HxK1-xNbO3 nanopeapod absorbing near-infrared light. Last but not least, dye photodegradation and water photoelectrolysis as proofs-of-concept manifested the full-spectrum utilization of diffusive solar energy by the Au@Nb@HxK1-xNbO3 nanopeapod for environmental remediation and fuel generation, respectively.
ISBN-13 (Hard Copy) | 9783736997806 |
ISBN-13 (eBook) | 9783736987807 |
Language | English |
Page Number | 166 |
Lamination of Cover | glossy |
Edition | 1. |
Publication Place | Göttingen |
Place of Dissertation | Karlsruhe |
Publication Date | 2018-04-23 |
General Categorization | Dissertation |
Departments |
Chemistry
Inorganic chemistry |
Keywords | spikecube, nanopeapod, photocatalyst, dye photodegradation, water photoelectrolysis |