Cuvillier Verlag

35 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Identification of electrochemical reaction kinetics by dynamic methods

Printausgabe
EUR 49,90

Identification of electrochemical reaction kinetics by dynamic methods

Fabian Kubannek (Autor)

Vorschau

Inhaltsverzeichnis, PDF (53 KB)
Leseprobe, PDF (200 KB)

ISBN-13 (Printausgabe) 9783736970540
Sprache Englisch
Seitenanzahl 200
Auflage 1.
Erscheinungsort Göttingen
Promotionsort Braunschweig
Erscheinungsdatum 30.07.2019
Allgemeine Einordnung Dissertation
Fachbereiche Chemie
Technische Chemie und Chemieingenieurwesen
Maschinenbau und Verfahrenstechnik
Schlagwörter Acetate oxidation, Bioelectrochemical system, Chemical Engineering, Catalyst, CO oxidation, Concentration pulse method, Cyclic voltammetry, Differential electrochemical mass spectrometry, Dynamic methods, Electrochemical impedance spectroscopy, Electrochemistry, Energy conversion, Frequency response analysis, Geobacter sulfurreducens, Glycerol oxidation, Heterogeneous catalysis, High pressure liquid chromatography, In-situ techniques, Macrokinetics, Mass transfer, Methanol oxidation, Microbial fuel cell, Modelling, Non-turnover-CV, Parameter identification, Platinum, Quantitative analysis, Reaction kinetics, Ruthenium, Simulation, Technical electrode, Turnover-CV
URL zu externer Homepage https://www.tu-braunschweig.de/ines
Beschreibung

Electrochemical energy conversion technologies are often seen as key components for the transition to an economy that is powered by renewable energy sources. Knowledge-based design and systematic improvement of electrochemical processes is only possible if the underlying reaction kinetics are well understood.
This work is based on the hypothesis that a combination of dynamic electrochemical methods, in-operando techniques, and simulations is a feasible and advantageous way towards the determination of electrochemical reaction kinetics. To demonstrate advantages of such a combined approach, four model systems are studied. Differential electrochemical mass spectrometry (DEMS) data and electrochemical data is used to parameterise physical models of the CO and methanol electrooxidation. The second part covers bioelectrochemical reactions. The first DEMS results on acetate oxidation in electrochemically active biofilms are presented, and storage mechanisms for charge as well as substrate are quantified. Furthermore, conversion pathways and rate constants in bioelectrochemical glycerol oxidation are investigated. In conclusion, it is demonstrated that the identification of electrochemical macrokinetics benefits significantly from the application of dynamic techniques, concentration measurements, physical simulation models.