Cuvillier Verlag

35 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Role of glutathione and Botrytis cinerea laccase activities in wine quality

EUR 41,88

EUR 29,40

Role of glutathione and Botrytis cinerea laccase activities in wine quality (Band 8)

Sabrina Zimdars (Autor)


Leseprobe, PDF (140 KB)
Inhaltsverzeichnis, PDF (110 KB)

ISBN-13 (Printausgabe) 9783736972544
ISBN-13 (E-Book) 9783736962545
Sprache Englisch
Seitenanzahl 122
Umschlagkaschierung matt
Auflage 1
Buchreihe Schriftenreihe der Professur für Molekulare Lebensmitteltechnologie
Band 8
Erscheinungsort Göttingen
Promotionsort Bonn
Erscheinungsdatum 11.08.2020
Allgemeine Einordnung Dissertation
Fachbereiche Chemie
Analytische Chemie
Mikrobiologie und Biotechnologie
Schlagwörter Glutathione, Botrytis cinerea, laccase, wine quality, enzyme, polyphenoloxidase, secretome, oxidation, antioxidant, fungal infection, fungicides, copper, phenolic compounds, wine color, discoloration, grape must, Riesling, winemaking, grape variety, Vitis vinifera, fermentation, vinification, yeast, Saccharomyces cerevisiae

The grapevine Vitis vinifera is highly susceptible to fungal infections. This entails numerous problems in winemaking leading to a reduced wine quality. As a consequence of the application of copper-based fungicides, elevated copper levels in the grape must may cause stress conditions for Saccharomyces cerevisiae during fermentation. This work describes the influence of glutathione, a natural and potent antioxidant, on vinification of a copper-rich Riesling must. The results provide important information on the use of glutathione in winemaking as a tool to reduce negative effects of copper. Wine quality deterioration may also be attributed to the presence of laccase, which is secreted by Botrytis cinerea present on infected grapes. This enzyme oxidizes phenolic compounds that are part of the plant defense system. The laccase-catalyzed oxidation of phenols in the must leads to an undesired discoloration. Therefore, the oxidative properties of laccase-containing secretomes of ten Botrytis cinerea isolates were investigated and their distinct impact on color deterioration was deduced from the different catalytic activities toward abundant wine phenolic compounds.