Fachbereiche | |
---|---|
Buchreihen (96) |
1358
|
Nachhaltigkeit |
3
|
Gesundheitswesen |
1
|
Geisteswissenschaften |
2346
|
Naturwissenschaften |
5392
|
Mathematik | 228 |
Informatik | 318 |
Physik | 979 |
Chemie | 1362 |
Geowissenschaften | 131 |
Humanmedizin | 243 |
Zahn-, Mund- und Kieferheilkunde | 10 |
Veterinärmedizin | 102 |
Pharmazie | 147 |
Biologie | 835 |
Biochemie, Molekularbiologie, Gentechnologie | 120 |
Biophysik | 25 |
Ernährungs- und Haushaltswissenschaften | 45 |
Land- und Agrarwissenschaften | 1001 |
Forstwissenschaften | 201 |
Gartenbauwissenschaft | 20 |
Umweltforschung, Ökologie und Landespflege | 146 |
Ingenieurwissenschaften |
1776
|
Allgemein |
95
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Leseprobe, PDF (510 KB)
Inhaltsverzeichnis, PDF (53 KB)
Lime plays a crucial role in modern industry—essential in steelmaking, construction, agriculture, and chemical manufacturing. However, its production is inherently carbon-intensive. To drastically reduce CO2 emissions, efficient carbon capture solutions are needed. The Indirectly Heated Carbonate Looping (IHCaL) process offers a groundbreaking approach to capturing CO2 from lime and cement production. By leveraging synergies with existing industrial processes, IHCaL technology minimizes energy penalties and economic costs. Yet, until now, key integration challenges and modeling gaps have remained unaddressed. To fill this research gap, this doctoral dissertation presents innovative IHCaL process integration approaches for efficient CO2 capture; advanced reactor models based on experimental data; strategies for heat recovery, power generation, and fuel optimization; and insights on CO2 capture and economics based on process simulations. All of this is complemented by practical design guidelines for scaling up the IHCaL process. This dissertation is a key reference for advancing IHCaL technology toward commercialization and accelerating the decarbonization of lime production.
ISBN-13 (Printausgabe) | 9783689528454 |
ISBN-13 (E-Book) | 9783689528461 |
DOI | 10.61061/ISBN_9783689528454 |
Sprache | Englisch |
Seitenanzahl | 250 |
Umschlagkaschierung | glänzend |
Auflage | 1. |
Erscheinungsort | Göttingen |
Promotionsort | Darmstadt |
Erscheinungsdatum | 11.08.2025 |
Allgemeine Einordnung | Dissertation |
Fachbereiche |
Naturwissenschaften
Technische Chemie und Chemieingenieurwesen Maschinenbau und Verfahrenstechnik Umwelttechnik |
Schlagwörter | CO2 capture, Indirectly heated carbonate looping, Calcium looping, Reactor and process modeling, Fluidization engineering, Lime production, Industrial decarbonization, Techno-economic assessment, Carbonator modeling, Calciner modeling, Sorbent circulation, Sorbent aging, Sorbent deactivation, Sorbent regeneration, Oxy-fuel combustion, Heat integration, Energy efficiency, Net-negative emissions, CO2 avoidance costs, Steam cycle modeling, Aspen Plus simulation, EBSILON Professional, Heat recovery steam generation (HRSG), Fully integrated process, Tail-end retrofitting, Waste-derived fuels, Biogenic fuels, Fuel flexibility, Solid recovered fuel (SRF), Specific primary energy consumption (SPECCA), Dimensionless numbers, Non-ideal calcination, Thermogravimetric analysis (TGA), Fluidization regimes, Turbulent fluidization, Fast fluidization, Gas-solid contact efficiency, Pilot-scale validation, Process optimization, Stochastic methodology, CO2-Abscheidung, Indirekt beheiztes Carbonate Looping, Calcium Looping, Reaktor- und Prozessmodellierung, Wirbelschichttechnik, Kalkproduktion, Industrielle Dekarbonisierung, Techno-ökonomische Analyse, Modellierung des Carbonators, Modellierung des Calcinators, Sorbenskreislauf, Sorbensalterung, Sorbensdeaktivierung, Regeneration von Sorbens, Oxyfuel-Verbrennung, Wärmeintegration, Energieeffizienz, Netto-negative Emissionen, CO2-Vermeidungskosten, Dampfkraftkreismodellierung, Aspen Plus-Simulation, EBSILON Professional, Abhitzedampferzeuger (HRSG), Vollständig integrierter Prozess, Tail-End-Nachrüstung, Abfallbasierte Brennstoffe, Biogene Brennstoffe, Brennstoffflexibilität, Ersatzbrennstoffe (EBS), Spezifischer Primärenergieverbrauch (SPECCA), Dimensionslose Kennzahlen, Nicht-ideale Kalzinierung, Thermogravimetrische Analyse (TGA), Strömungsregime, Turbulente Fluidisierung, Fast Fluidisierung, Gas-Feststoff-Kontakteffizienz, Validierung im Pilotmaßstab, Prozessoptimierung, Stochastische Methodik |