Cookies help us deliver our services. By using our services, you agree to our use of cookies.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Cuvillier Verlag

Publications, Dissertations, Habilitations & Brochures.
International Specialist Publishing House for Science and Economy

Cuvillier Verlag

Premiumpartner
De En Es
Titelbild-leitlinien
Contributions to Machine Learning and Psychometrics

Hard Copy
EUR 42.90

E-book
EUR 30.03

Contributions to Machine Learning and Psychometrics

Computational, Graphical, and Statistical Methods for Assessing Stability

Michel Philipp (Author)

Preview

Table of Contents, PDF (49 KB)
Extract, PDF (120 KB)

ISBN-13 (Hard Copy) 9783736994478
ISBN-13 (eBook) 9783736984479
Language English
Page Number 148
Lamination of Cover matt
Edition 1.
Publication Place Göttingen
Publication Date 2017-06-20
General Categorization Dissertation
Departments Psychology
Keywords stability, recursive partitioning, decision trees, variable selection, cutpoint selection, resampling, R package stablelearner, cognitive diagnosis model, G-DINA, standard errors, information matrix, differential item functioning, DINA model, Wald test, Lagrange multiplier test, score test
Description

Die vorliegende Arbeit umfasst mehrere Forschungsbeiträge über die Entwicklung neuer Methoden zur Erhebung der Stabilit¨at statistischer Datenanalysen, die in Forschung und Praxis durchgef¨uhrt werden. Stabilit¨at ist eine wichtige Voraussetzung damit aus den Ergebnissen statistischer Datenanalysen konsistente Schlussfolgerungen gezogen werden können. Dies ist jedoch nur möglich, wenn Analysen, die auf leicht veränderten oder auf komplett unterschiedlichen Datensätzen vom selben datengenerierenden Prozess beruhen, zu vergleichbaren Interpretationen führen. Ausserdem ist Stabilität eine zentrale Eigenschaft vieler psychometrischer Modelle, um objektive und faire Vergleiche zwischen Personen zu gewährleisten.