Departments | |
---|---|
Book Series (92) |
1307
|
Humanities |
2290
|
Natural Sciences |
5354
|
Engineering |
1745
|
Engineering | 284 |
Mechanical and process engineering | 841 |
Electrical engineering | 670 |
Mining and metallurgy | 30 |
Architecture and civil engineering | 73 |
Common |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Extract, PDF (850 KB)
Table of Contents, PDF (120 KB)
Lithium (Li) deposition is a problem in Li batteries (LB) – both Li metal (LMB) and Li-ion (LIB) batteries – which limits their performance in terms of power and energy density. Two trends can be identified in the advancement of LBs concerning the problem of Li deposition: optimization of the existing system (the state-of-the-art LIBs) and further development of cell components such as electrolytes. This work addresses both approaches.
In the first part, this study investigates Li deposition in LMB and LIBs. A novel method to study the Li-based transport mechanisms in LIBs is introduced. Later the kinetic deviations between anode and cathode as a consequence of aging and the relation of these deviations to the occurrence of Li-plating are discussed.
In the second part, the applicability of PEO-based solid polymer electrolytes for LMBs to overcome the Li plating issue is investigated. The introduction of various interfacial interlayers at the cathode/electrolyte interphase was studied to improve the electrochemical stability of the cells. Cells with an in-situ electro-deposited interlayer showed the best cyclability.
ISBN-13 (Hard Copy) | 9783736977099 |
ISBN-13 (eBook) | 9783736967090 |
Language | English |
Page Number | 174 |
Lamination of Cover | matt |
Edition | 1. |
Book Series | Energie & Nachhaltigkeit |
Volume | 10 |
Publication Place | Göttingen |
Place of Dissertation | Stuttgart |
Publication Date | 2022-12-30 |
General Categorization | Dissertation |
Departments |
Electrical engineering
|
Keywords | Lithium plating, Lithium (Li), Lithium deposition, Solid polymer electrolyte (SPE), Lithium battery (LB), Kinetic balancing, Kinetic properties of cell components, Li-ion battery (LIB), Li metal battery (LMB), state-of-the-art LIB, charge transport regions, charge transfer process, Li-based transport mechanisms, pseudo-two-dimensional (P2D) cell model, Solid Electrolyte Interphase (SEI), Anode’s aging mechanisms, Nernst-Einstein relation, Lithium metal anode, Graphite anode, NMC cathode, LiTFSI Salt, LiFSI Salt, Ether-based liquid electrolyte, Coulombic efficiency, Electrochemical stability of polymer electrolyte, Electrochemical stability window, electrochemical impedance spectroscopy (EIS), Cycling test, Polymer electrolyte, Ionic conductivity of polymer electrolyte, poly(ethylene oxide) (PEO), PEO-based SPE, intermediate coating layer, high voltage cathodes, poly(styrene)-b-poly(ethylene oxide) (PS-b-PEO), poly(styrene) (PS), poly(vinyl alcohol) (PVA), Lithium Aluminum Titanium Phosphate (LATP), cathode/electrolyte interphase, in-situ electro-deposition, Lithium-Ablagerung, Lithium (Li), Lithium-Beschichtung, Feststoff Polymerelektrolyt (SPE), Lithium-Batterie (LB), kinetisches Gleichgewicht, Kinetische Eigenschaften der Zellkomponenten, Li-Ionen-Batterie (LIB), Li-Metall Batterie (LMB), LIB auf dem Stand der Technik, Ladungstransportbereiche, Ladungstransportbereiche, Li-basierte Transportmechanismen, pseudo-zweidimensionales (P2D) Zellmodell, Feststoff-Elektrolyt-Grenzphase (SEI), Alterungsmechanismen der Anode, Nernst-Einstein-Beziehung, Lithium-Metall-Anode, Graphit-Anode, NMC-Kathode, LiTFSI-Salz, LiFSI-Salz, Flüssigelektrolyt auf Etherbasis, Coulomb-Effizienz (CE), Elektrochemische Stabilität von Polymerelektrolyten, Elektrochemisches Stabilitätsfenster (ESW), elektrochemische Impedanzspektroskopie (EIS), Zyklustest, Polymerelektrolyt, Ionenleitfähigkeit von Polymerelektrolyt, Poly(ethylenoxid) (PEO), SPE auf PEO-Basis, Zwischenschicht Beschichtung, Hochspannungskathoden, Poly(styrol)-b-Poly(ethylenoxid) (PS-b-PEO), Poly(styrol) (PS), Poly(vinylalkohol) (PVA), Lithium-Aluminium-Titan-Phosphat (LATP), Kathode/Elektrolyt-Interphase, In-situ-Elektroabscheidung |