Departments | |
---|---|
Book Series (92) |
1308
|
Humanities |
2293
|
Natural Sciences |
5354
|
Engineering |
1746
|
Engineering | 284 |
Mechanical and process engineering | 842 |
Electrical engineering | 670 |
Mining and metallurgy | 30 |
Architecture and civil engineering | 73 |
Common |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Extract, PDF (170 KB)
Table of Contents, PDF (51 KB)
Diese Arbeit befasst sich mit der Erkennung der Querungsintention von Fußgängern, um das Situationsbewusstsein zukünftig automatisiert fahrender Fahrzeuge zu verbessern. Auf Basis einer umfassenden Analyse bestehender Definitionen und Modelle zur menschlichen Intention wird der Begriff Fußgängerintention hierzu eindeutig definiert und ein Modell zur formalen Beschreibung der Erkennung der Querungsintention entwickelt. Dieses Modell bildet die Basis für den Entwurf eines Erkennungssystems, bei dem merkmalsbasierte Methoden des maschinellen Lernens unter Verwendung der Support Vector Regression eingesetzt werden. Dabei wird der nicht direkten Beobachtbarkeit der Intention mit dem Einsatz einer beobachterbasierten Videoannotationsmethode zur Bildung der Referenz begegnet. Die Leistungsfähigkeit des entwickelten Systems wird schließlich unter Verwendung realer Videodaten evaluiert.
ISBN-13 (Hard Copy) | 9783736978355 |
ISBN-13 (eBook) | 9783736968356 |
Language | Alemán |
Page Number | 264 |
Lamination of Cover | matt |
Edition | 2. |
Book Series | Künstliche Intelligenz & Digitalisierung |
Volume | 4 |
Publication Place | Göttingen |
Place of Dissertation | Bochum |
Publication Date | 2023-06-29 |
General Categorization | Dissertation |
Departments |
Engineering
|
Keywords | Intentionserkennung, Fußgängersicherheit, Intention, Intentionales Handeln, Fußgängerintention, Querungsintention, Verhaltensprädiktion, Autonomes Fahren, Autonomes Fahrzeug, Maschinelles Lernen, Maschinelles Sehen, Intention Recognition, pedestrian safety, intention, intentional action, pedestrian intention, intention to cross, behavior prediction, autonomous driving, autonomous vehicle, machine learning, machine vision |