Departments | |
---|---|
Book Series (95) |
1329
|
Humanities |
2300
|
Natural Sciences |
5356
|
Mathematics | 224 |
Informatics | 314 |
Physics | 975 |
Chemistry | 1354 |
Geosciences | 131 |
Human medicine | 242 |
Stomatology | 10 |
Veterinary medicine | 100 |
Pharmacy | 147 |
Biology | 830 |
Biochemistry, molecular biology, gene technology | 117 |
Biophysics | 25 |
Domestic and nutritional science | 44 |
Agricultural science | 996 |
Forest science | 201 |
Horticultural science | 20 |
Environmental research, ecology and landscape conservation | 145 |
Engineering |
1751
|
Common |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Table of Contents, Datei (53 KB)
Extract, Datei (230 KB)
Nanomaterialien werden als eine der Schlüsseltechnologien des 21. Jahrhunderts bezeichnet.
Hierbei ist es möglich, die physikalischen und chemischen Eigenschaften von Stoffen über die
Größe und Form der Partikel zu verändern. Ein Hindernis bei der industriellen Nutzung dieser
Materialien ist die fehlende Möglichkeit, Partikel mit hochdefinierten Eigenschaften in großen
Mengen gezielt herzustellen.
Die Produktion von Nanopartikeln aus der Gasphase ist ein kostengünstiger Prozess, der auf
industriellen Maßstab skaliert werden kann. Um jedoch auch bei hohen Produktionsvolumina
die Erzeugung spezifischer Materialien zu garantieren, müssen die Prozesse innerhalb des
Reaktors verstanden sein. Hierfür sind nicht-invasive Messungen von kritischen Größen wie
Temperatur und der Verteilung einzelner Spezies innerhalb des Reaktors notwendig.
Im Rahmen dieser Arbeit wurde die Laser-induzierte Fluoreszenz-Spektroskopie, die in der
Verbrennungsdiagnostik seit Jahrzenten ein erprobtes Verfahren zur nicht-invasiven Charak-
terisierung ist, auf die Synthese von Nanopartikeln angepasst. Zur Temperaturbestimmung
wurde das Multi-Linien NO-LIF-Thermometrie-Verfahren benutzt. Hierbei wird ein Laser mit
durchstimmbarer Wellenlänge verwendet, um verschiedene Fluoreszenzübergänge des NO-
Moleküls mit unterschiedlichen Grundzustandsenergien anzuregen. Aus der mittels einer Ka-
mera detektierten Fluoreszenz lässt sich die Temperatur zweidimensional und ortsaufgelöst
messen.
Um auch die Konzentration von Intermediaten während der Nanopartikelsynthese ortsaufge-
löst messen zu können wurde ein Verfahren entwickelt, dass aus einer Kombination von Fluo-
reszenz und Absorptionsmessungen die Konzentration quantitativ bestimmt. Dieses Verfahren
wurde an atomarem Eisen, einem wichtigen Intermediaten bei der Fe2O3-Synthese, demons-
triert, lässt sich jedoch auch auf andere Systeme übertragen.
Die hier entwickelten Techniken wurden während der Partikelsynthese in einem Niederdruck-
flammenreaktor und einen Mikrowellenplasmareaktor angewendet. Hierbei lag ein Hauptau-
genmerk auf der Veränderung des Temperaturfelds bei Variation verschiedener Parameter,
wie sie auch führ verschiedene Syntheserouten verändert werden. Ebenfalls wurde der Ein-
fluss von Prekursoren auf das Temperaturfeld innerhalb der Reaktoren betrachtet.
ISBN-13 (Printausgabe) | 3869559489 |
ISBN-13 (Hard Copy) | 9783869559483 |
ISBN-13 (eBook) | 9783736939486 |
Language | Alemán |
Page Number | 128 |
Lamination of Cover | matt |
Edition | 1 Aufl. |
Volume | 0 |
Publication Place | Göttingen |
Place of Dissertation | Duisburg |
Publication Date | 2011-11-28 |
General Categorization | Dissertation |
Departments |
Physics
Mechanical and process engineering |