Departments | |
---|---|
Book Series (95) |
1329
|
Humanities |
2300
|
Natural Sciences |
5356
|
Mathematics | 224 |
Informatics | 314 |
Physics | 975 |
Chemistry | 1354 |
Geosciences | 131 |
Human medicine | 242 |
Stomatology | 10 |
Veterinary medicine | 100 |
Pharmacy | 147 |
Biology | 830 |
Biochemistry, molecular biology, gene technology | 117 |
Biophysics | 25 |
Domestic and nutritional science | 44 |
Agricultural science | 996 |
Forest science | 201 |
Horticultural science | 20 |
Environmental research, ecology and landscape conservation | 145 |
Engineering |
1751
|
Common |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Table of Contents, Datei (32 KB)
Extract, Datei (110 KB)
In der vorliegenden Dissertation wurden Untersuchungen zur adaptiven Sliding- Mode-Regelung mit Netzen von Gaußschen radialen Basisfunktionen vorgestellt. Ergebnisse aus Simulationen bzw. Laborexperimenten wurden dargestellt, um die Leistungsf¨ahigkeit der vorgeschlagenen Regelungsverfahren zu veranschaulichen. Grundlagen der Sliding-Mode-Regelung wurden in Kapitel 2 zusammengefasst. Die Unsicherheit der Regelstrecke kann durch eine hochfrequente Stellgr¨oße un- terdru¨ckt werden, die genau einer Regelung mit hoher Verst¨arkung der niedrigeren Frequenz entspricht. Die Synthese der Sliding-Mode-Regelung, basierend auf der direkten Methode von Ljapunow mit asymptotischer Konvergenz, wurde dargestellt. In diesem Kapitel wurde ein ¨Uberblick zur adaptiven Sliding-Mode-Regelung gegeben. W¨ahrend die klassischen Methoden zur Parametersch¨atzung das adaptive Problem fu¨r Systeme in der Linear-in-Parameter-Form relativ gut l¨osen, wurden neue Ver- fahren der adaptiven Regelung mit neuronalen Netzen fu¨r Systeme eingefu¨hrt, die nicht diese Form aufweisen. Diese Verfahren beantworten allerdings meistens nicht die Frage der Stabilit¨at hinsichtlich der Approximationsfehler neuronaler Netze. Eine der Hauptideen dieser Arbeit ist die Integration von SMC mit direkter adaptiver Regelung, in der die Stabilit¨at durch die direkte Methode von Ljapunow sichergestellt wird. Netze mit Gaußschen radialen Basisfunktionen (GRBF-Netze) wurden als Kompensatoren der Unsicherheit eingefu¨hrt. Der Grund fu¨r die Auswahl der GRBF-Netze war, daß ihre Ausg¨ange Linearkombinationen der Ausgangsgewich- tungen sind, so dass die Stabilit¨at des Regelkreises einfacher zu erreichen ist. GRBF- Netze besitzen neben der besseren Konvergenz auch ein schnelleres Lernverhalten, verglichen mit den Multilayer-Feedforward-Netzen.
ISBN-13 (Printausgabe) | 3865378730 |
ISBN-13 (Hard Copy) | 9783865378736 |
ISBN-13 (eBook) | 9783736918733 |
Language | English |
Page Number | 158 |
Edition | 1 |
Volume | 0 |
Publication Place | Göttingen |
Place of Dissertation | Bochum |
Publication Date | 2006-05-24 |
General Categorization | Dissertation |
Departments |
Informatics
|