Departments  

Book Series (78) 
1041

Humanities 
1951

Natural Sciences 
5063

Engineering 
1526

Engineering  257 
Mechanical and process engineering  740 
Electrical engineering  579 
Mining and metallurgy  29 
Architecture and civil engineering  60 
Common 
77

Leitlinien Unfallchirurgie
5. Auflage bestellen 
Table of Contents, Datei (57 KB)
Extract, Datei (110 KB)
ISBN13 (Printausgabe)  3865374344 
ISBN13 (Hard Copy)  9783865374349 
ISBN13 (eBook)  9783736914346 
Language  
Page Number  326 
Edition  1 
Volume  0 
Publication Place  Göttingen 
Place of Dissertation  Göttignen 
Publication Date  20050519 
General Categorization  Dissertation 
Departments 
Electrical engineering

This book focuses on Model Predictive Control (MPC) of discretetime hybrid systems. Hybrid systems contain continuous and discrete valued components, and are located at the intersection between the fields of control theory and computer science. MPC uses an internal model of the controlled plant to predict the future evolution of the controlled variables over a prediction horizon. A cost function is minimized to obtain the optimal control input sequence, which is applied to the plant by means of a receding horizon policy. The latter implies that only the first control input of the input sequence is implemented, the horizon is shifted by one timestep and the above procedure is repeated at the next sampling instant. Most importantly, theory and tools are available to offline derive the piecewise affine (PWA) statefeedback control law. Hence, any timeconsuming online computation of the control input is avoided and plants with high sampling frequencies can be controlled.
The book is divided into two parts: The first part is devoted to theory and algorithms, whereas the second part tackles applications in the fields of power electronics and power systems. In the first part, using the notion of cell enumeration in hyperplane arrangements from computational geometry, we propose an algorithm that efficiently enumerates all feasible modes of a composition of hybrid systems. This technique allows the designer to evaluate the complexity of the compound model, to efficiently translate the model into a PWA representation, and to reduce the computational burden of optimal control schemes by adding cuts that prune infeasible modes from the model.
With respect to implementation, an important issue is the complexity reduction of PWA statefeedback controllers. Hence, we propose two algorithms that solve the problem of deriving a PWA representation that is both equivalent to the given one and minimal in the number of regions. As both algorithms refrain from solving additional Linear Programs, they are not only optimal but also computationally feasible. In many cases, the optimal complexity reduction constitutes an enabling technique when implementing the optimal controllers as lookup tables in hardware.
In the second part of the book, we consider the field of power electronics that is intrinsically hybrid, since the positions of semiconductor switches are described by binary variables. %Furthermore, hard constraints and nonlinearities are often present. The fact that the methodologies of MPC and hybrid systems are basically unknown in the power electronics community has motivated us to consider such problems, namely switchmode DCDC converters and induction machines driven by threephase inverters using the notion of Direct Torque Control (DTC). For these problems, we propose novel modelling and control schemes that are conceptually simple, easy to devise, understand and tune, and most importantly, implementable.
Specifically for DTC, we present a low complexity modelling approach of the induction machine, based on which we propose three novel Model Predictive Control (MPC) approaches to tackle the DTC problem, namely MPC based on Priority Levels, MPC based on Feasibility and Move Blocking, and MPC based on Extrapolation. In particular the third control scheme is expected to be implementable, what has motivated our industrial partner to protect the scheme by a patent.
Considering the synchronous stepdown DCDC converter as an illustrative example for DCDC converters, we derive a hybrid model of the converter that is valid for the whole operating regime, and for which we formulate and solve offline an MPC problem leading to a statefeedback control law parameterized over the whole statespace. The analysis of the controller shows that the considered statespace is control invariant, and that the nominal closedloop system is globally exponentially stable what is proved by a piecewise quadratic (PWQ) Lyapunov function. Moreover, the controller rejects large disturbances in the input voltage and the load.
Alike power electronics, power systems possess many hybrid features including integer manipulated variables such as loadshedding and capacitor switching, and internal controllers based on logic and finite state machines such as tap changers in transformers. Motivated by the recent severe blackouts in the US and Europe, we propose an emergency voltage control scheme that stabilizes the voltages in spite of major outages in order to prevent a voltage collapse and a blackout. To avoid unnecessary disruptive control actions, the control moves are classified into nominal and emergency control actions, and corresponding penalty levels are used in the objective function triggering disruptive control moves such as loadshedding only if absolutely necessary.