Departments | |
---|---|
Book Series (92) |
1283
|
Humanities |
2284
|
Natural Sciences |
5333
|
Mathematics | 224 |
Informatics | 312 |
Physics | 975 |
Chemistry | 1353 |
Geosciences | 131 |
Human medicine | 242 |
Stomatology | 10 |
Veterinary medicine | 99 |
Pharmacy | 147 |
Biology | 815 |
Biochemistry, molecular biology, gene technology | 114 |
Biophysics | 25 |
Domestic and nutritional science | 44 |
Agricultural science | 996 |
Forest science | 201 |
Horticultural science | 20 |
Environmental research, ecology and landscape conservation | 145 |
Engineering |
1731
|
Common |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Extract, PDF (150 KB)
Table of Contents, PDF (53 KB)
ISBN-13 (Hard Copy) | 9783954041695 |
ISBN-13 (eBook) | 9783736941694 |
Language | Alemán |
Page Number | 126 |
Lamination of Cover | matt |
Edition | 1. Aufl. |
Publication Place | Göttingen |
Place of Dissertation | Rostock |
Publication Date | 2012-08-07 |
General Categorization | Dissertation |
Departments |
Chemistry
Inorganic chemistry Analytical chemistry |
Keywords | Oxidative Carbonylierung, CuY-Zeolithe, Dimethylcarbonat, Reaktionsmechanismus, Operando-Spektroskopie, Operando-SSITKA/DRIFTS/UV-Vis-DRS/MS, Oxidative carbonylation, CuY zeolites, Dimethyl carbonate, Reaction mechanism, Operando spectroscopy, Operando DRIFTS/UV-Vis-DRS/MS |
Zusammenfassung
Für die Mechanismus-Aufklärung der heterogen-katalysierten oxidativen Carbonylierung von Methanol (MeOH) zu Dimethylcarbonat (DMC) an Cu-haltigen Y-Zeolithen wurde eine neuartige operando DRIFTS/UV-vis-DRS/MS Methodenkopplung entwickelt und eingesetzt, mit der simultane Informationen bezüglich der an der Katalysatoroberfläche adsorbierten Spezies und ihrer Veränderungen während der Reaktion (DRIFTS) sowie Veränderungen des Oxidationszustandes und der Koordinationssphäre der katalytisch aktiven Cu-Spezies (UV-Vis-DRS) erhältlich sind, wobei gleichzeitig die Analyse der gasförmigen Produkte mittels MS erfolgt.
Die Wechselwirkung der Katalysatoren mit den verschiedenen Reaktanden und Reaktand-Mischungen (O2, CO, CO/O2, MeOH/O2, MeOH/CO, MeOH/CO/O2) wurde im Detail untersucht. Durch die Verwendung von 16O2/18O2- und 12CO/13CO-haltigen Gasmischungen konnte anhand des transienten Verlaufs des Isotopenaustauschs in Edukten und Produkten zwischen aktiven und nicht aktiven Spezies unterschieden werden.
DMC wird über Monodentat-Monomethylcarbonat (MMC) als Intermediat gebildet, welches durch Wechselwirkung von am selben Cu+-Zentrum adsorbiertem Methoxid und CO entsteht und mit Methanol zu DMC weiterreagiert. Der erforderliche Oxidationsschritt zur MMC-Bildung erfolgt unter Beteiligung von Gittersauerstoff aus CuOx-Spezies, während der dabei partiell reduzierte Katalysator durch Gasphasensauerstoff re-oxidiert wird. Adsorbierte Bidentat-MMC-Spezies sind inaktiv. Unselektive Oxidationsreaktionen von MeOH und CO führen zur Bildung von Nebenprodukten wie Methylformiat, Dimethoxymethan und CO2.
Abstract
For elucidating the reaction mechanism of the oxidative gas phase carbonylation of methanol (MeOH) to dimethyl carbonate (DMC) over CuY zeolites a new operando DRIFTS/UV-Vis-DRS/MS setup was developed and used enabling simultaneous information concerning the nature of adsorbates and their changes during reaction (DRIFTS) and the changes of oxidation state and coordination sphere of the catalytically active Cu species (UV-Vis-DRS) where the gaseous products are analyzed at the same time by MS.
The interaction of the catalysts with different reactants and reactant mixtures (O2, CO, CO/O2, MeOH/O2, MeOH/CO, MeOH/CO/O2) was studied in detail. By using 16O2/18O2 and 12CO/13CO containing gas mixtures the transient isotopic exchange of reactants and products were monitored which allowed the discrimination between active and spectator species.
DMC is produced via a monodentate monomethyl carbonate (MMC) species as intermediate, forming by interaction of adsorbed methoxide and CO at the same Cu+ site, which consecutively reacts with methanol to DMC. Lattice oxygen supplied by CuOx species is involved in the required oxidation step for DMC formation while the gas phase oxygen is needed to reoxidize the partially reduced catalyst. Adsorbed bidentate MMC species were found to be inactive. Unselective oxidation reactions of MeOH and CO cause the formation of byproducts like methyl formate, dimethoxy methane and CO2.