Departments | |
---|---|
Book Series (96) |
1331
|
Humanities |
2308
|
Natural Sciences |
5357
|
Mathematics | 225 |
Informatics | 314 |
Physics | 976 |
Chemistry | 1354 |
Geosciences | 131 |
Human medicine | 242 |
Stomatology | 10 |
Veterinary medicine | 100 |
Pharmacy | 147 |
Biology | 830 |
Biochemistry, molecular biology, gene technology | 117 |
Biophysics | 25 |
Domestic and nutritional science | 44 |
Agricultural science | 996 |
Forest science | 201 |
Horticultural science | 20 |
Environmental research, ecology and landscape conservation | 145 |
Engineering |
1753
|
Common |
92
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Extract, PDF (600 KB)
Table of Contents, PDF (75 KB)
Synthetic sophisticated nanostructures represent a fundamental building block for the development of nanotechnology. The fabrication of nanoparticles complex in structure and material composition is key to build nanomachines that can operate as man-made nanoscale motors, which autonomously convert external energy into motion.
To achieve this, asymmetric nanoparticles were fabricated combining a physical vapor deposition technique known as NanoGLAD and wet chemical synthesis.
This thesis primarily concerns three complex colloidal systems that have been developed:
i)Hollow nanocup inclusion complexes that have a single Au nanoparticle in their pocket. The Au particle can be released with an external trigger.
ii)The smallest self-propelling nanocolloids that have been made to date, which give rise to a local concentration gradient that causes enhanced diffusion of the particles.
iii)Enzyme-powered pumps that have been assembled using bacteriophages as biological nanoscaffolds. This construct also can be used for enzyme recovery after heterogeneous catalysis.
ISBN-13 (Hard Copy) | 9783736997974 |
ISBN-13 (eBook) | 9783736987975 |
Language | English |
Page Number | 150 |
Lamination of Cover | glossy |
Edition | 1. |
Publication Place | Göttingen |
Place of Dissertation | Stuttgart |
Publication Date | 2018-06-01 |
General Categorization | Dissertation |
Departments |
Physics
Chemistry Biochemistry, molecular biology, gene technology |
Keywords | Nanofabrication, Inorganic inclusion complexes, Janus particles, self-propelling nanoparticles, enhanced diffusion, biohybrid materials, bacteriophages, enzymatic micropumps, enzyme recovery |