Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Cuvillier Verlag

Publications, Dissertations, Habilitations & Brochures.
International Specialist Publishing House for Science and Economy

Cuvillier Verlag

De En Es
Quantitative analysis of the electrochemically active bacteria Geobacter sulfurreducens and Shewanella oneidensis

Hard Copy
EUR 34.40

E-book
EUR 24.00

Quantitative analysis of the electrochemically active bacteria Geobacter sulfurreducens and Shewanella oneidensis (Volume 82) (English shop)

Christina Engel (Author)

Preview

Extract, PDF (860 KB)
Table of Contents, PDF (620 KB)

ISBN-13 (Hard Copy) 9783736972117
ISBN-13 (eBook) 9783736962118
Language English
Page Number 128
Lamination of Cover matt
Edition 1.
Book Series Schriftenreihe des Institutes für Bioverfahrenstechnik der Technischen Universität Braunschweig
Volume 82
Publication Place Göttingen
Place of Dissertation Braunschweig
Publication Date 2020-05-12
General Categorization Dissertation
Departments Biology
Microbiology and biotechnology
Keywords Acetate, Anode potential, Anode reduction, Bioelectrochemical systems, Biofilm, Biofilm formation, Cell growth, Chronoamperometry, Cocultivation, Confocal laser scanning microscope, Current density, Cyclic voltammetry, Cytochrome bd menaquinole oxidase, Dissolved oxygen, Electrochemically active bacteria, Electrochemically active biofilms, Electron acceptor, Electron transfer system, Extracellular electron transfer, Flow cytometry, Fumarate, Gene expression, Geobacter sulfurreducens, Growth rate, Interaction, Lactate, Long-term behavior, Menaquinol oxidase, Metabolism, Microaerobic cultivation, Microaerobic growth, Microbial electrolysis cell, Nanowires, Oxygen, Oxygen reduction, Oxygen uptake rate, Pili, Shewanella oneidensis, Survival strategies, Transcriptome analysis, Wastewater treatment, Acetat, Anodenpotential, Anodenreduktion, Bioelektrochemische Systeme, Biofilm, Biofilmbildung, Bioverfahrenstechnik, Zellwachstum, Chronoamperometrie, Ko-Kultivierung, Konfokales Laser Scanning Mikroskop, Stromdichte, Zyklische Voltammetrie, Cytochrome bd Menaquinol Oxidase, Gelöstsauerstoff, Elektrochemisch aktive Bakterien, Elektrochemisch aktive Biofilme, Elektronenakzeptor, Elektronentransfersystem, Extrazellulärer, Elektronentransfer, Durchflusszytometrie, Fumarat, Genexpression, Geobacter sulfurreducens, Wachstumsrate, Interaktion, Lactat, Langzeitverhalten, Menaquinol, Oxidase, Metabolismus, Mikroaerobe Kultivierung, Mikroaerobes Wachstum, Mikrobielle Elektrolysezelle, Nanowires, Sauerstoff, Sauerstoffreduktion, Sauerstoffaufnahmerate, Pili, Shewanella oneidensis, Überlebensstrategien, Transkriptomanalyse, Abwasserreinigung
Description

Electrochemically active bacteria are important biocatalysts in bioelectrochemical systems. This work investigated the long-term behaviour of an electrochemical defined mixed culture of Geobacter sulfurreducens and Shewanella oneidensis, and the influence of the set anode potential on this defined mixed culture. Further, G. sulfurreducens was investigated non-electrochemically in pure culture to elucidate how this bacterium accomplishes oxygen reduction.
Planktonic S. oneidensis cells were found to be beneficial for current production and biofilm growth of G. sulfurreducens in a microbial electrolysis cell. However, upon removal of planktonic cells, these benefits could not be maintained as S. oneidensis was not incorporated sufficiently into the G. sulfurreducens-based biofilm. In terms of the applied anode potential, 0.2 VAg/AgCl as well as 0.2 VAg/AgCl were found to be best. At 0.2 VAg/AgCl the highest current density was achieved while at -0.2 VAg/AgCl the highest current production in relation to biofilm thickness was observed. G. sulfurreducens was found to reduce oxygen in non-electrochemical pure cultures at a maximum specific oxygen uptake rate of 95 ± 11 mgO2 gCDW-1 h-1. The expression of the gene for the cytochrome bd menaquinol oxidase was found to be upregulated under microaerobic conditions, indicating this enzyme to be responsible for oxygen reduction.