Cuvillier Verlag

Publications, Dissertations, Habilitations & Brochures.
International Specialist Publishing House for Science and Economy

Cuvillier Verlag

De En Es
Microbial production of cis,cis-muconic acid from hydrothermally converted lignocellulose

Hard Copy
EUR 44.28

E-book
EUR 31.80

Microbial production of cis,cis-muconic acid from hydrothermally converted lignocellulose (Volume 8) (English shop)

Sören Starck (Author)

Preview

Extract, PDF (380 KB)
Table of Contents, PDF (140 KB)

ISBN-13 (Hard Copy) 9783736975897
ISBN-13 (eBook) 9783736965898
Language English
Page Number 134
Lamination of Cover matt
Edition 1.
Book Series Hochschulschriften - Institut für Systembiotechnologie, Universität des Saarlandes
Volume 8
Publication Place Göttingen
Place of Dissertation Saarbrücken
Publication Date 2022-03-17
General Categorization Dissertation
Departments Biology
Microbiology and biotechnology
Mechanical and process engineering
Allgemeine Verfahrenstechnik
Keywords Lignin, Hemicellulose, Lignocellulose, Hydrothermal Conversion, Muconic acid, Adipic acid, Nylon, Pseudomonas putida, Corynebacterium glutamicum, Amycolatopsis, renewable, sustainable, fermentation, aromatics, bio-based ecomomy, catechol, guaiacol, xylose, metabolic engineering, biomass, distillation, Kraft process, activated charcoal, dioxygenase, fed-batch, HPLC, GC-MS, bioconversion, Hemicellulose, cis-Mukonsäure, renewable resources, nachwachsende Rohstoffe, Lignintypen, Mukonsäureproduzenten, mikrobielle Stoffwechselwege, muconic acid producers, microbial pathways, Aromate, aromatics, Nahrungsindustrie, bio-basierte Industrie, bio-based industry, fossile Ressourcen, fossil resources, Monomerausbeute, Biokonversion, Depolymerisierungsstrategie, depolymerization strategy, metabolisches Engineering, microbial factory, metabolic engineering, Produktanreicherung, product accumulation, Valorisierung, valorization, verschiedene Holzarten, different wood species, Fraktionierungsmethoden, Depolymerisationsstrategie, depolymerization strategy, lignozellulosehaltige Biomasse, hydrothermale Umwandlung, hydrothermal conversion, chemische Industrie, chemical industry, Bioraffinerien, biorefineries, Nahrungspflanzen, Non-Food-Materialien, non-food materials, food crops, Vanillinmarkt, Nebenproduktstrom, low value side-stream
URL to External Homepage https://www.isbio.de/
Description

Cis,cis-muconic acid receives increasing interest to be produced from renewables. Catabolic microbial pathways can be tailored to accumulate cis,cis-muconic acid from a range of aromatic compounds. A renewable, sustainable and under-valued resource for aromatics is lignin. In this work, using hydrothermal conversion, lignin was depolymerized into hydrolysates with up to 615 mM aromatic monomer content. Catechol-rich hydrolysates were generated for bioconversion with the previously developed cis,cis-muconic acid producers P. putida MA-9 and C. glutamicum MA-2, whereas hydrolysates were guaiacol-rich for Amycolatopsis sp. MA-2. When grown with glucose as a co-substrate, C. glutamicum MA-2 yielded 2.6 g L⁻¹ (100 % yield) cis,cis-muconic acid from catechol. Towards an even more sustainable process, glucose was then replaced by hemicellulose, a non-food renewable. Hemicellulose, a co-constituent of lignin in lignocellulose, was hydrothermally converted into a mixture of C₅ and C₆ sugars. As hemicellulose was mainly converted into xylose (91 % yield), C. glutamicum MA-2 was engineered to utilize this pentose. Fed-batch bioconversion on a catechol-rich Kraft lignin hydrolysate as well as a hemicellulose hydrolysate using C. glutamicum MA-4 yielded 4 g L⁻¹ muconic acids. As the developed process was non-competitive to feed and food, it is a promising starting point for future application in bio-based industrial settings.