Departments | |
---|---|
Book Series (96) |
1330
|
Humanities |
2305
|
Natural Sciences |
5357
|
Engineering |
1752
|
Engineering | 285 |
Mechanical and process engineering | 844 |
Electrical engineering | 673 |
Mining and metallurgy | 30 |
Architecture and civil engineering | 73 |
Common |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Extract, PDF (160 KB)
Table of Contents, PDF (62 KB)
Zwei grundlegende Herausforderungen für das Automobilradar betreffen die Robustheit gegenüber Interferenzen im gleichen Frequenzband, sowie die Verbesserung der Winkelauflösung zur präzisen Lokalisierung von Objekten und Personen. In der vorliegenden Forschungsarbeit werden neue Ansätze der modernen Signalverarbeitung für Automobilradarsensoren basierend auf Deep Learning (DL) erforscht um die Leistungsfähigkeit und die Robustheit von konventionellen Verfahren zur Interferenzunterdrückung sowie zur Winkelschätzung zu übertreffen. Für das Training von datenbasierten DL Verfahren werden spezielle Datensätze benötigt, welche mittels neuartigen hybriden Verfahren erzeugt werden. Anschließend wird sowohl die Effektivität dieser hybriden Verfahren als auch die Robustheit der trainierten Modelle gegenüber Modellabweichungen und Nichtidealitäten demonstriert. Am Beispiel der Interferenzunterdrückung werden die Vorteile von DL in der Automobilradarsignalverarbeitung aufgezeigt. Die erfolgreiche Validierung der Konzepte erfolgt anhand von Messungen von Interferenzen im 77 GHz-Frequenzband. Des Weiteren wird gezeigt, dass die vorgestellten Verfahren wirkungsvoll eingesetzt werden können, um eine präzise Lokalisierung von Zielen zu realisieren. Mit hybriden Datensätzen werden drei verschiedene Konzepte untersucht um eine hochauflösende Winkelschätzung zu realisieren. Hierbei wird eine Leistungsfähigkeit erzielt die den Stand der Technik übertrifft, ohne dass eine sensorspezifische Kalibrierung erforderlich ist.
ISBN-13 (Hard Copy) | 9783736977143 |
ISBN-13 (eBook) | 9783736967144 |
Language | Alemán |
Page Number | 154 |
Lamination of Cover | matt |
Edition | 1. |
Publication Place | Göttingen |
Place of Dissertation | Erlangen |
Publication Date | 2022-12-15 |
General Categorization | Dissertation |
Departments |
Automotive engineering
Electrical engineering |
Keywords | Fahrzeug, Autonomes Fahren, Automatisiertes Fahren, Umfelderkennung, Sensor, Radar, Automobil, Automobilradar, Signalverarbeitung, Radarsignalverarbeitung, Automobilradarsignalverarbeitung, Algorithmen, Chirp-Sequence Radar, Antennenarray, Signalverarbeitungskette, Künstliche Intelligenz, Maschinelles Lernen, Deep Learning, Regression, Klassifikation, Multilayer Perzeptron, Autoencoder, Interferenzen, Interferenzunterdrückung, hochauflösend, Winkelschätzung, Winkelauflösung, Maximum Likelihood, Signalmodell, Kalibrierung, Zielanzahl, Zieldetektion, Simulation, Datensätze, Hybride, Datenvorverarbeitung, Trainingdaten, Testdaten, Validierungsdaten, Frequenzbereich, Vehicle, Autonomous driving, Automated driving, Environment sensing, Sensor, Radar, Automotive, Automotive Radar, Signal Processing, Radar Signal Processing, Automotive Radar Signal Processing, Algorithms, Chirp-Sequence Radar, Antenna array, Signal processing chain, Artificial Intelligence, Machine Learning, Deep Learning, Regression, Classification, Multilayer Perceptron, Autoencoder, Interference, Interference mitigation, Super-resolution, Direction-of-arrival estimation, Angular resolution, maximum likelihood, Signal model, Calibration, Model order, Target detection, Simulation, Data sets, Hybrid, Data preprocessing, Training data, Test data, Validation data, Frequency domain, Fahrerassistenzsysteme, adaptive cruise control, adaptiver Tempomat |