Departments | |
---|---|
Book Series (92) |
1308
|
Humanities |
2293
|
Natural Sciences |
5354
|
Mathematics | 224 |
Informatics | 313 |
Physics | 975 |
Chemistry | 1354 |
Geosciences | 131 |
Human medicine | 242 |
Stomatology | 10 |
Veterinary medicine | 99 |
Pharmacy | 147 |
Biology | 830 |
Biochemistry, molecular biology, gene technology | 117 |
Biophysics | 25 |
Domestic and nutritional science | 44 |
Agricultural science | 996 |
Forest science | 201 |
Horticultural science | 20 |
Environmental research, ecology and landscape conservation | 145 |
Engineering |
1746
|
Common |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Extract, PDF (110 KB)
Table of Contents, PDF (73 KB)
This work adresses the gap between basic research and applied research in the field of CO₂ electrolysis using molecular catalysts. The development of new catalysts includes important aspects of the industrial application as early as possible to unlock the true potential of a catalyst and to prevent potential problems that occur when changing to industrially relevant process conditions. The results show that unexpected phenomena can occur when scaling up a technology from lab scale to pilot, or even industrial scale, advocating an effort to come as close as possible to large scale conditions, already in the lab. That can prevent major setbacks in the process and save valuable time and effort. This aspect is underlined by recent research in the specific field of CO₂ electrolysis using organometallic complexes, as catalysts show different performance characteristics after immobilization, for example. The successful development of future solutions depends on the interdisciplinary collaboration taking into account molecular considerations as well as process engineering aspects.
ISBN-13 (Hard Copy) | 9783736977389 |
ISBN-13 (eBook) | 9783736967380 |
Language | English |
Page Number | 172 |
Lamination of Cover | matt |
Edition | 1. |
Book Series | Energie & Nachhaltigkeit |
Volume | 11 |
Publication Place | Göttingen |
Place of Dissertation | Stuttgart |
Publication Date | 2023-02-09 |
General Categorization | Dissertation |
Departments |
Chemistry
Industrial chemistry and chemical engineering |
Keywords | Electrochemical Carbon Dioxide Reduction, CO2ER, Flow Cell, Electrolyzer, Molecular Catalysts, decarbonization, defossilisation, electrochemistry, electrocatalysis, carbon capture and utilization, CCU, CO2 valorization, CO2 reduction, sustainable chemistry, decentralized chemical production, energy storage, chemical energy storage, electrification of chemical processes, CO2 electrolysis, catalysis, alternative non-fossil carbon source, transfer hydrogenation, Cyclovoltammetry, Controlled potential electrolysis, formic acid, carbon monoxide, green chemicals, value added products, cathode materials, organometallic complexes, immobilization, homogeneous catalysis, process engineering, electrochemical reaction engineering, Power to X, chemical process, hydrogen evolution reaction, Elektrochemische Kohlendioxid-Reduktion, CO2ER, Durchflusszelle, Elektrolyseur, Molekularkatalysatoren, Dekarbonisierung, Defossilisierung, Elektrochemie, Elektrokatalyse, Kohlenstoffabscheidung und -nutzung, CCU, CO2-Valorisierung, CO2-Reduktion, nachhaltige Chemie, dezentrale chemische Produktion, Energiespeicherung, chemische Energiespeicherung, Elektrifizierung chemischer Prozesse, CO2-Elektrolyse, Katalyse, alternative nicht-fossile Kohlenstoffquellen, Transferhydrierung, Cyclovoltammetrie, Elektrolyse mit kontrolliertem Potenzial, Ameisensäure, Kohlenmonoxid, grüne Chemikalien, Produkte mit Mehrwert, Kathodenmaterialien, metallorganische Komplexe, Immobilisierung, homogene Katalyse, Verfahrenstechnik, elektrochemische Reaktionstechnik, Power to X, chemischer Prozess, Wasserstoffentwicklung |
URL to External Homepage | www.ipv.uni-stuttgart.de |