Cuvillier Verlag

Publications, Dissertations, Habilitations & Brochures.
International Specialist Publishing House for Science and Economy

Cuvillier Verlag

De En Es
Generating test scenarios for assessing automated driving systems using scenario fusion

Hard Copy
EUR 73.43

E-book
EUR 51.40

Generating test scenarios for assessing automated driving systems using scenario fusion (Volume 28) (English shop)

Maximilan Bäumler (Author)

Preview

Extract, PDF (390 KB)
Table of Contents, PDF (31 KB)

This thesis presents the find-unify-synthesize-evaluate for representativity (FUSE4Rep) process model, a novel approach to the safety evaluation of automated driving systems (ADS). Designed to make road traffic safer by preventing accidents, ADS must demonstrate a higher level of safety than human drivers. FUSE4Rep addresses the challenge of unifying divergent information from sources such as police accident data and video-based traffic observations to ensure a comprehensive scenario representation. Through scenario fusion, the process synthesises diverse traffic data into a representative scenario catalogue, enabling a thorough assessment of ADS over a wide scenario space. Using statistical matching, it derives and varies logical scenarios to cover potential real-world conditions in stochastic simulations. A case study shows how German police accident data and video-based observations are used to create a fused scenario catalogue, demonstrating the practical application of FUSE4Rep. As part of the comprehensive “Dresden Method” for ADS evaluation, this approach provides a reliable framework for the development of safer ADS and contributes to improved road safety.

ISBN-13 (Hard Copy) 9783689528539
ISBN-13 (eBook) 9783689528546
Language English
Page Number 220
Lamination of Cover matt
Edition 1.
Book Series Schriftenreihe des Lehrstuhls Kraftfahrzeugtechnik
Volume 28
Publication Place Göttingen
Place of Dissertation TU Dresden
Publication Date 2024-12-10
General Categorization Dissertation
Departments Automotive engineering
Keywords Statistisches Matching, Stochastische Verkehrssimulation, Stochastic driving simulation, Szenarien-basiertes Testen, Scenario-based testing, Drone, Maschinelles lernen, Machine learning, automatisierte Fahrsysteme, automated driving systems (ADSs), Verkehrssimulationen, traffic simulations, Verkehrsunfälle, traffic accidents, Straßenverkehrsdatenquellen, Autonomes Notbremssystem, autonomous emergency braking system, Dresdner Methode, Dresden method, Ereignisdatenrekorder, event data recorder, Naturalistische Fahrstudie, naturalistic driving study, Surrogat-Sicherheitsmaßnahme, surrogate safety measure, driving, Videobasierte Verkehrsbeobachtung, video-based traffic observation, Stau-Pilot, Verkehrsdatenquelle, traffic data, Straßennetz, road network, traffic guidance, Verkehrsführung, menschliches Fahrerverhalten, human driver behavior, accident, Unfall, , Regelbasiertes unbeaufsichtigtes Fahren,driving se rule based unsupervised, intelligente Fahrsysteme, driving databases, Fahrdatenbanken
URL to External Homepage https://tu-dresden.de/bu/verkehr/iad/kft