Cuvillier Verlag

Publications, Dissertations, Habilitations & Brochures.
International Specialist Publishing House for Science and Economy

Cuvillier Verlag

De En Es
Modellierung der Crossover-Prozesse und Entwicklung von Kapazitatsausgleichsstrategien zur Betriebsoptimierung von Vanadium-Redox-Flow-Batterien

Hard Copy
EUR 69.90

E-book
EUR 58.68

Modellierung der Crossover-Prozesse und Entwicklung von Kapazitatsausgleichsstrategien zur Betriebsoptimierung von Vanadium-Redox-Flow-Batterien (Volume 63) (English shop)

Katharina Schafner (Author)

Preview

Table of Contents, PDF (530 KB)
Extract, PDF (920 KB)

ISBN-13 (Hard Copy) 9783736971400
ISBN-13 (eBook) 9783736961401
Language Alemán
Page Number 254
Lamination of Cover matt
Edition 1.
Book Series Schriftenreihe des Energie-Forschungszentrums Niedersachsen (EFZN)
Volume 63
Publication Place Göttingen
Place of Dissertation Clausthal
Publication Date 2020-01-04
General Categorization Dissertation
Departments Chemistry
Industrial chemistry and chemical engineering
Mechanical and process engineering
Keywords Vanadium-Redox-Flow-Batterie, Batterie, Crossover, Membran-Transportvorgänge, Modellierung, Modell, Kapazitätsausgleich, Poröse Separator, Membran, Membranwiderstand, Diffusion, Diffusionskoeffizient, Nafion™, Elektrolytüberlauf, Elektrochemische Impedanzspektroskopie, Experimentelle Untersuchungen, Betriebsoptimierung, Elektrochemie, Vanadium Redox Flow Battery, Battery, Crossover, Membrane tranport processes, Modelling, Modell, Capacity balancing, Porous separator, Membrane, Membrane resistance, Diffusion, Diffusion coefficient, Nafion™, Electrolyte overflow, Electrochemical impedance spectroscopy, Experimentell studies, Optimisation of operation, Electrochemistry
Description

Die Vanadium-Redox-Flow-Batterie ist ein Energiespeichersystem, das eine wichtige Komponente im Rahmen der Energiewende sein kann. Durch ihren Aufbau weist diese Batterie Vorteile als stationärer Speicher gegenüber anderen Speichertechnologien auf. So sind Leistung und Kapazität unabhängig voneinander skalierbar, und im Standby-Betrieb findet lediglich eine geringe Selbstentladung statt. Im Betrieb kommt es jedoch durch eine Kreuzkontamination von Vanadium-Ionen durch die Membran zu Verlusten. Dieser als Crossover bezeichnete Prozess führt zur kontinuierlichen Abnahme der Batteriekapazität. Als Transportmechanismen wirken Diffusion, Migration und Konvektion. Um den Crossover-Prozess zu beschreiben, werden im Rahmen dieser Arbeit die Membranparameter elektrischer Widerstand und Vanadium-Diffusionskoeffizienten experimentell bestimmt und zur Entwicklung eines mathematischen Modells verwendet. Messungen am Prüfstand dienen hierbei der Modellvalidierung. Um der Abnahme der Kapazität entgegenzuwirken, werden experimentell und mathematisch verschiedene Kapazitätsausgleichsstrategien entwickelt und analysiert. Es hat sich hierbei gezeigt, dass mit unterschiedlichen Methoden die Kapazitätsabnahme der Batterie verringert und dadurch ein effizienterer Betrieb ermöglicht werden kann.